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Coming soon to an arXiv near you…

B. Ć. and B. Mesland, Gauge theory on noncommutative
Riemannian principal bundles
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Why bother?

What is a NC gauge theory with compact connected Lie
structure group K?

Thesis (Brzeziński–Majid, Hajac, et al.)
Strong connections on principal O (K)-comodule algebras.

Antithesis (Chamseddine–Connes et al.)
The spectral action principle applied to suitable spectral
triples.

Synthesis?
Unbounded KK-theory in the spirit of Brain–Mesland–Van
Suijlekom, but cf. Conv{Dąbrowski, Sitarz, Zucca}.
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Spectral triples



The quantum Weyl algebra

Let g be a positive quadratic Lie algebra over R.

Definition (Alekseev–Meinrenken, cf. Kostant)
The quantum Weyl algebra is the unital ∗-algebraW(g) over
R with even skew-adjoint generators in g and odd
skew-adjoint generators in g∗, satisfying:

1. ∀α, β ∈ g∗, [α, β] = −2〈α, β〉;
2. ∀X, Y ∈ g, [X, Y] = [X, Y]g = ad(X)Y;
3. ∀X ∈ g, ∀α ∈ g∗, [X, α] = ad∗(X)α.

In other words,W(g) = Cl(g∗)⋊ad∗ U(g).
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The cubic Dirac element

Definition (Kostant)
The cubic Dirac element is the odd self-adjoint element

Dg := εiεi +
1
6〈εi, [εj, εk]〉ε

iεjεk ∈ W(g). (1)

It turns out that Dg satisfies the following:

1. ∀α ∈ g∗, [Dg, α] = −2α♯, where α♯ := 〈α, εi〉εi;
2. ∀X ∈ g, [Dg, X] = 0;
3. D2g ≡ Δg mod Cl(g∗) + Cl(g∗) · g, where Δg := −〈εi, εj〉εiεj.

Note, in particular, that D2g is central.
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Differential operators

Suppose that g integrates to a connected Lie group G.

Let cV : Cl(g∗)→ B(V) be a G-equivariant Z/2-graded
finite-dimensional ∗-representation.

Let UV : G→ U(L2(G, V)) be the resulting unitary
representation.

Note that the G-equivariant identification of g with
left-fundamental (i.e., right-invariant) vector fields on G yields

g× G ∼→ TG, g∗ × G ∼→ T∗G, Cl(g∗)× G ∼→ Cl(T∗G).

Thus, cV extends (via dUV on g) to a G-equivariant Z/2-graded
∗-representation ofW(g) by differential operators on L2(G, V).
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Spectral triples

Suppose—purely for simplicity—that G is compact.

Let (A,H,D) := (C∞(G), L2(G, V), cV(Dg)). Then:

1. H is a Z/2-graded separable Hilbert space;
2. D is a densely-defined odd self-adjoint operator on H with

(D+ i)−1 ∈ K(H);

3. A is a unital ∗-subalgebra of B(H), such that

∀a ∈ A, aDomD ⊂ DomD, [D,a] ∈ B(H).

In other words, (A,H,D) is a spectral triple.

Remarks
1. Everything we do can be done in the non-unital case.
2. We want (A,H,D) to be n-multigraded, i.e., for n := dim g.
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What are they good for?

The spectral triple (A,H,D) encodes the following:

1. first-order (de Rham) differential calculus via

A 3 a 7→ [D,a] = c(da);

2. spectral geometry (e.g., dimension, volume, measure) via

(0,+∞) 3 t 7→ exp(−tD2) ∈ L1(H);

3. index theory (i.e., NC algebraic topology) via

[D] ∈ Kn(A), A := AL(H) = C(G).

Points 1 and 2 hint at possibilities for NC gauge theory.
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Principal K-spectral triples



The relative cubic Dirac element

Let k ⊂ g be a Lie sub-algebra, so thatW(k) can identified with
the unital ∗-subalgebra ofW(g) generated by k and k∗ ∼= (k0)⊥.

Definition (Kostant)
The relative cubic Dirac element of (g, k) is the element

Dg,k := Dg −Dk. (2)

It turns out that Dg,k satisfies the following:

1. ∀α ∈ k∗, [Dg,k, α] = 0;
2. ∀X ∈ k, [Dg,k, X] = 0.

It follows that [Dk,Dg,k] = 0 and hence D2g = D2k +D
2
g,k.
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Homogeneous spaces

Suppose now that k integrates to a compact connected
subgroup K of G, so that π : G→ K\G is a principal K-bundle.

Observe that m := k⊥ satisfies [k,m] ⊂ m, so that K\G is a
reductive homogeneous space.

Since Dg,k is K-invariant, it follows that cV(Dg,k) descends to a
differential operator DK on L2(K\G, V×K G) ∼= L2(G, V)K = HK.

In fact, it turns out that DK, like D, is a Dirac-type operator, so
that ((Cl(k∗)⊗A)K,HK,DK) is a spectral triple.

Question
How are (A,H,D) and ((Cl(k∗)⊗A)K,HK,DK) related?
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Equivariant spectral triples

Let K be a compact connected Lie group.

A K-spectral triple consists of a spectral triple (A,H,D) and an
even unitary representation U : K→ U(H), such that:

1. A is a K-invariant subalgebra of C1-vectors for

α : K→ Aut(B(H)), k 7→ (T 7→ UkTU∗
k);

2. DomD is a K-invariant subspace of C1-vectors for U;
3. D is K-invariant.

Running Example
We have (A,H,D;U) := (C∞(G), L2(G, V), cV(Dg); UV

∣∣
K).
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Vertical geometries

Fix a normalised Ad-invariant inner product 〈 · , · 〉 for k.

A vertical Clifford action is a G-equivariant Z/2-graded
∗-representation c : Cl(k∗)→ B(H), such that:

1. ∀x ∈ Cl(k∗), ∀a ∈ A, [c(x),a] = 0;
2. ∀x ∈ Cl(k∗), c(x)DomD ⊂ DomD;
3. ∀X ∈ k, μ(X) := − 1

2 [D, c(X
♭)]− dU(X) ∈ B(H).

Running Example
We can take c := cV, which yields μ ≡ 0.

Remarks

1. This generalises to Z(M(A))K(0)-valued inner products on k.
2. This can be related to Alekseev–Meinrenken’s notion of a
connection for a k-DGA.
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The vertical Dirac operator

The vertical Clifford action c extends (via dU on k) to a
G-equivariant Z/2-graded ∗-representation ofW(k) by
unbounded operators on Halg := ⊕π∈K̂Hπ.

We can therefore define the vertical Dirac operator by

Dv := c(Dk) = c(εi)dU(εi) +
1
6〈εi, [εj, εk]〉c(ε

iεjεk). (3)

Running Example
We have Dv = cV(Dk) for Dk ∈ W(k) ⊂ W(g).
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Remainders & horizontal Dirac operators

A remainder for (A,H,D;U; c) is an K-invariant odd self-adjoint
operator Z ∈ B(H); its horizontal Dirac operator is

Dh[Z] := D− Dv − Z. (4)

Example
In the commutative case (with a generalised Dirac operator &
totally geodesic orbits), the canonical remainder is

Zc := c(εi)μ(εi)−
5
12〈εi, [εj, εk]〉c(ε

iεjεk).

Running Example
We can take Z = 0, which yields Dh[0] = cV(Dg,k).
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Strong remainders

Let Z be a remainder for (A,H,D;U; c), and set

Ω1D−Z,shor(A) := A · [D− Z,AG]
B(H)

,

Ω1Dh[Z],shor(Cl(k
∗)⊗A) := (Cl(k∗)⊗ A) · [Dh[Z], (Cl(k∗)⊗A)K]

B(H)
.

We say that Z is strong if:

∀a ∈ A, [Dh[Z],a] ∈ Ω1D−Z,shor(A), (5)

∀ω ∈ Cl(k∗)⊗A, [Dh[Z],ω] ∈ Ω1Dh[Z],shor(Cl(k
∗)⊗A). (6)

Running example
Our operator Dh[0] = cV(Dg,k) satisfies

∀f ∈ C∞(G), [Dh[0], f] = c(Projπ∗T∗(K\G) df) ∈ Ω1D,shor(C∞(G)).
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Principal K-spectral triples

A principal K-spectral triple is (A,H,D;U; c) with strong
remainder Z, such that:

1. the K-action α on A := AB(H) is free, i.e.,

Span{(k 7→ αk(a1)a2) | a1,a2 ∈ A} = C(K)⊗ A;

2. the K-actions on Cl(k∗)⊗ A and H satisfy

∀π ∈ K̂, (Cl(k∗)⊗ A)π · HK = Hπ,
{ω ∈ Cl(k∗)⊗ A | ω|HK = 0} = {0},

(Cl(k∗)⊗A)K = (Cl(k∗)⊗ A)K.

Running example
Condition 1 is simply principality of G↠ K\G; condition 2
follows from tricks with associated vector bundles.
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Analysis

Given a principal K-spectral triple (A,H,D;U; c; Z):

1. c encodes the vertical (intrinsic) geometry and index
theory through

(A, E, S;UE) := (A,Cl(k∗)⊗ A(Cl(k∗)⊗A)K ,Dk;Ad
∗⊗α);

2. DK[Z] := Dh[Z]|HK encodes the horizontal geometry and
index theory through ((Cl(k∗)⊗A)K,HK,DK[Z]; id);

3. [Dh[Z], ·] encodes vertical extrinsic geometry and the
principal connection through

[Dh[Z], ·] : A → Ω1D−Z,shor(A),

[Dh[Z], ·] : Cl(k∗)⊗A → Ω1Dh[Z],shor(Cl(k
∗)⊗A).
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Synthesis

Theorem (Ć.–Mesland)
Let (A,H,D;U; c; Z) be a principal K-spectral triple. Then:

1. H ∼= E ⊗̂(Cl(k∗)⊗A)K HK and Dv ∼= S ⊗̂ id;
2. [Dh[Z], ·] canonically induces a K-equivariant Hermitian
connection ∇h on E, such that Dh[Z] ∼= id ⊗̂∇hDK[Z];

3. [D] = [S] ⊗̂(Cl(k∗)⊗A)K [DK[Z]] in K-equivariant KK-theory.

In other words, in K-equivariant unbounded KK-theory,

(A,H,D− Z;U)
∼= (A, E, S;UE;∇) ⊗̂(Cl(k∗)⊗A)K ((Cl(k∗)⊗A)K,HK,DK[Z]; id).

Remark
The class [S] is the NC wrong-way class for A←↩ AK.
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A word from our sponsors

1. The quantum Weyl algebraW(k) defines the natural
K-∗-algebra of vertical NC differential operators.

2. De Commer–Yamashita’s proof that a K-C∗-algebra is
principal iff it is saturated provides a NC proxy for
Gleason’s topological slice theorem.

3. Recent work by Kaad–Van Suijlekom and by Van den
Dungen allows for maximal generality in the non-unital
case.

The only formal bottleneck to working with K := Kq is point 1.

Plea
Can one constructW(kq) 3 Dkq?
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Gauge theory



Gauge comparability

Let (A,H,D0;U; c;0) be a principal K-spectral triple, such that

∀x ∈ Cl(k∗), [(D0)h[0], x] ∈ Cl(k∗) · Ω1D0,shor(A). (7)

LetD be the set of all D on H making (A,H,D;U; c;0) into a
principal K-spectral triple satisfying the analogue of (7).
Definition
We say that D1,D2 ∈D are gauge comparable if:

1. DomD1 ∩ DomD2 is a joint core for D1 and D2;
2. D1 − D2 ∈ B(DomDv,H);
3. D1 − D2 supercommutes with Cl(k∗) and AK.

Denote the gauge comparability class of D0 by At (for Atiyah).
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Gauge theory and KK-theory

Proposition (Ć.–Mesland)
For any D1,D2 ∈D, if D1 and D2 are gauge comparable, then

[D1] = [D2], [DK1 ] = [DK2 ]

in K-equivariant KK-theory.

Proof.
Since D1 − D2 ∈ B(DomDv,H), it follows that DK1 − DK2 ∈ B(HK),
so that [DK1 ] = [DK2 ], and hence

[D1] = [S] ⊗̂(Cl(k∗)⊗A)K [DK1 ] = [S] ⊗̂(Cl(k∗)⊗A)K [DK2 ] = [D2].

Remark
The non-unital version is an honest theorem.
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Gauge transformations

Let’s define a gauge transformation for D ∈ At to be an even
K-invariant unitary S ∈ U(H), (super)commuting with Cl(k∗) and
AK, such that:

1. SAS∗ ⊂ A;
2. S · DomD ⊂ DomD and [D, S] ∈ B(DomDv,H);
3. [D, S] supercommutes with Cl(k∗) and AK.

We define the gauge group G to be the group of all gauge
transformations for one (and hence all!) D ∈ At.

The gauge group G admits a gauge action on At by

G× At 3 (S,D) 7→ SDS∗ ∈ At.
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Relative gauge potentials

Let’s define a relative gauge potential for D ∈ At to be an odd
K-invariant symmetric operator ω on DomDv, such that:

1. ∀a ∈ A, [ω,a] ∈ Ω1D,shor(A);
2. ω ∈ B(DomDv,H);
3. ω supercommutes with Cl(k∗) and AK.

We define the space of relative gauge potentials at to be the
R-vector space of all relative gauge potentials for one (and
hence all!) D ∈ At.

The gauge group G acts (naïvely) on at by

G× at 3 (S,ω) 7→ SωS∗ ∈ at.
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The affine picture

Theorem (Ć.–Mesland)

1. The space At is an affine space modelled on at with
subtraction At× At 3 (D1,D2) 7→ D1 − D2 ∈ at.

2. For any fixed D ∈ At, the homeomorphism

At→ at, D′ 7→ D′ − D

intertwines the gauge action of G on At with

G× at 3 (S,ω) 7→ S[D, S∗] + SωS∗ ∈ at.

Remarks
1. Everything in sight can be suitably topologised.
2. Current technology limits us to the unital case for this!
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A concrete noncommutative example

Fix eiθ ∈ U(1), which generates a Z-action on U(1). Let:

• /DU(1) :=
( 0 i
i 0

) d
dt ;

• N : cc(Z,C2)→ `2(Z,C2) be given by

N(δn ⊗ v) := δn ⊗ 2πni
( 0 i
i 0

)
v;

• Υ : U(1)→ U(`2(Z,C2)) be the dual representation;
• (A,H;U) := (Z⋉ C∞(U(1)), `2(Z,C2) ⊗̂ L2(U(1),C2), Υ ⊗̂ id));
• D0 := N ⊗̂ id+ id ⊗̂/DU(1);
• c : u(1)∗ = iR 3 −i 7→

( 0 i
i 0

)
⊗̂ id ∈ B(H).

Then (A,H,D0;U; c;0) is a principal U(1)-spectral triple.

If θ
2π is irrational, then this recovers the irrational NC 2-torus T2θ.

24



The machinery in action

Proposition
We have compatible isomorphisms

{ω ∈ at | ω|HU(1) = 0} ∼= Z1
(
Z,Ω1cts(U(1),R)

)
,

{S ∈ G | S|HU(1) = id} ∼= Z1b (Z, C∞(U(1),U(1))) .

Example
For any λ ∈ R, the element ωλ ∈ at corresponding to

(n 7→ λn · dt) ∈ Z1
(
Z,Ω1cts(U(1),R)

)
yields D0 + ωλ ∈ At corresponding to the conformal class of
the flat metric on T2θ parametrized by τ = λ+ i.
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