Principal bundles in NC Riemannian geometry

Branimir Ćaćić ¹ and Bram Mesland ² Quantum Flag Manifolds in Prague, September 2019

¹Department of Mathematics & Statistics, University of New Brunswick

²Mathematical Institute, Leiden University

Coming soon to an arXiv near you...

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles

What is a NC gauge theory with compact connected Lie structure group *K*?

What is a NC gauge theory with compact connected Lie structure group *K*?

Thesis (Brzeziński-Majid, Hajac, et al.)

Strong connections on principal $\mathcal{O}(K)$ -comodule algebras.

What is a NC gauge theory with compact connected Lie structure group *K*?

Thesis (Brzeziński-Majid, Hajac, et al.)

Strong connections on principal $\mathcal{O}(K)$ -comodule algebras.

Antithesis (Chamseddine-Connes et al.)

The spectral action principle applied to suitable spectral triples.

What is a NC gauge theory with compact connected Lie structure group *K*?

Thesis (Brzeziński-Majid, Hajac, et al.)

Strong connections on principal $\mathcal{O}(K)$ -comodule algebras.

Antithesis (Chamseddine-Connes et al.)

The spectral action principle applied to suitable spectral triples.

Synthesis?

Unbounded KK-theory in the spirit of Brain–Mesland–Van Suijlekom, but cf. Conv{Dąbrowski, Sitarz, Zucca}.

Spectral triples

The quantum Weyl algebra

Let $\mathfrak g$ be a positive quadratic Lie algebra over R.

Definition (Alekseev-Meinrenken, cf. Kostant)

The *quantum Weyl algebra* is the unital *-algebra $\mathcal{W}(\mathfrak{g})$ over **R** with even skew-adjoint generators in \mathfrak{g} and odd skew-adjoint generators in \mathfrak{g}^* , satisfying:

- 1. $\forall \alpha, \beta \in \mathfrak{g}^*, [\alpha, \beta] = -2\langle \alpha, \beta \rangle;$
- 2. $\forall X, Y \in \mathfrak{g}, [X, Y] = [X, Y]_{\mathfrak{g}} = ad(X)Y;$
- 3. $\forall X \in \mathfrak{g}, \forall \alpha \in \mathfrak{g}^*, [X, \alpha] = \mathrm{ad}^*(X)\alpha$.

In other words, $\mathcal{W}(\mathfrak{g}) = \mathsf{Cl}(\mathfrak{g}^*) \rtimes_{\mathsf{ad}^*} \mathcal{U}(\mathfrak{g})$.

The cubic Dirac element

Definition (Kostant)

The cubic Dirac element is the odd self-adjoint element

$$\mathcal{D}_{\mathfrak{g}} := \varepsilon^{i} \varepsilon_{i} + \frac{1}{6} \langle \varepsilon_{i}, [\varepsilon_{j}, \varepsilon_{k}] \rangle \varepsilon^{i} \varepsilon^{j} \varepsilon^{k} \in \mathcal{W}(\mathfrak{g}). \tag{1}$$

It turns out that $\mathcal{D}_{\mathfrak{g}}$ satisfies the following:

- 1. $\forall \alpha \in \mathfrak{g}^*, [\mathcal{D}_{\mathfrak{g}}, \alpha] = -2\alpha^{\sharp}$, where $\alpha^{\sharp} \coloneqq \langle \alpha, \varepsilon^i \rangle \varepsilon_i$;
- 2. $\forall X \in \mathfrak{g}, [\mathcal{D}_{\mathfrak{g}}, X] = 0;$
- 3. $\mathcal{D}^2_{\mathfrak{g}} \equiv \Delta_{\mathfrak{g}} \mod \mathsf{Cl}(\mathfrak{g}^*) + \mathsf{Cl}(\mathfrak{g}^*) \cdot \mathfrak{g}$, where $\Delta_{\mathfrak{g}} \coloneqq -\langle \varepsilon^i, \varepsilon^j \rangle \varepsilon_i \varepsilon_j$.

Note, in particular, that $\mathcal{D}^2_{\mathfrak{g}}$ is central.

Differential operators

Suppose that $\mathfrak g$ integrates to a connected Lie group G.

Let $c^V: Cl(\mathfrak{g}^*) \to B(V)$ be a *G*-equivariant $\mathbf{Z}/2$ -graded finite-dimensional *-representation.

Let $U^V: G \to U(L^2(G, V))$ be the resulting unitary representation.

Note that the G-equivariant identification of $\mathfrak g$ with left-fundamental (i.e., right-invariant) vector fields on G yields

$$\mathfrak{g} \times G \stackrel{\sim}{\to} TG$$
, $\mathfrak{g}^* \times G \stackrel{\sim}{\to} T^*G$, $Cl(\mathfrak{g}^*) \times G \stackrel{\sim}{\to} Cl(T^*G)$.

Thus, c^V extends (via dU^V on \mathfrak{g}) to a G-equivariant $\mathbf{Z}/2$ -graded *-representation of $\mathcal{W}(\mathfrak{g})$ by differential operators on $L^2(G,V)$.

Spectral triples

Suppose—purely for simplicity—that *G* is compact.

Let
$$(A, H, D) := (C^{\infty}(G), L^{2}(G, V), c^{V}(\mathcal{D}_{g}))$$
. Then:

- 1. H is a $\mathbb{Z}/2$ -graded separable Hilbert space;
- 2. D is a densely-defined odd self-adjoint operator on H with

$$(D+i)^{-1}\in K(H);$$

3. A is a unital *-subalgebra of B(H), such that

$$\forall a \in \mathcal{A}, \quad a \text{ Dom } D \subset \text{Dom } D, \quad [D, a] \in \mathcal{B}(H).$$

In other words, (A, H, D) is a spectral triple.

Spectral triples

Suppose—purely for simplicity—that *G* is compact.

Let
$$(A, H, D) := (C^{\infty}(G), L^{2}(G, V), c^{V}(\mathcal{D}_{\mathfrak{g}}))$$
. Then:

- 1. H is a $\mathbb{Z}/2$ -graded separable Hilbert space;
- 2. D is a densely-defined odd self-adjoint operator on H with

$$(D+i)^{-1}\in K(H);$$

3. A is a unital *-subalgebra of B(H), such that

$$\forall a \in \mathcal{A}, \quad a \text{ Dom } D \subset \text{Dom } D, \quad [D, a] \in \mathcal{B}(H).$$

In other words, (A, H, D) is a spectral triple.

Remarks

- 1. Everything we do can be done in the non-unital case.
- 2. We want (A, H, D) to be n-multigraded, i.e., for $n := \dim \mathfrak{g}$.

What are they good for?

The spectral triple (A, H, D) encodes the following:

1. first-order (de Rham) differential calculus via

$$A \ni a \mapsto [D, a] = c(da);$$

2. spectral geometry (e.g., dimension, volume, measure) via

$$(0,+\infty)\ni t\mapsto \exp(-tD^2)\in \mathcal{L}_1(H);$$

3. index theory (i.e., NC algebraic topology) via

$$[D] \in K^n(A), \quad A := \overline{\mathcal{A}}^{L(H)} = C(G).$$

7

What are they good for?

The spectral triple (A, H, D) encodes the following:

1. first-order (de Rham) differential calculus via

$$A \ni a \mapsto [D, a] = c(da);$$

2. spectral geometry (e.g., dimension, volume, measure) via

$$(0,+\infty)\ni t\mapsto \exp(-tD^2)\in \mathcal{L}_1(H);$$

3. index theory (i.e., NC algebraic topology) via

$$[D] \in K^n(A), \quad A := \overline{\mathcal{A}}^{L(H)} = C(G).$$

Points 1 and 2 hint at possibilities for NC gauge theory.

Principal K-spectral triples

The relative cubic Dirac element

Let $\mathfrak{k} \subset \mathfrak{g}$ be a Lie sub-algebra, so that $\mathcal{W}(\mathfrak{k})$ can identified with the unital *-subalgebra of $\mathcal{W}(\mathfrak{g})$ generated by \mathfrak{k} and $\mathfrak{k}^* \cong (\mathfrak{k}^0)^{\perp}$.

Definition (Kostant)

The relative cubic Dirac element of $(\mathfrak{g},\mathfrak{k})$ is the element

$$\mathcal{D}_{\mathfrak{g},\mathfrak{k}} := \mathcal{D}_{\mathfrak{g}} - \mathcal{D}_{\mathfrak{k}}. \tag{2}$$

It turns out that $\mathcal{D}_{\mathfrak{g},\mathfrak{k}}$ satisfies the following:

- 1. $\forall \alpha \in \mathfrak{k}^*, [\mathcal{D}_{\mathfrak{g},\mathfrak{k}}, \alpha] = 0;$
- 2. $\forall X \in \mathfrak{k}, [\mathcal{D}_{\mathfrak{g},\mathfrak{k}}, X] = 0.$

It follows that $[\mathcal{D}_{\mathfrak{f}},\mathcal{D}_{\mathfrak{g},\mathfrak{f}}]=$ o and hence $\mathcal{D}_{\mathfrak{g}}^2=\mathcal{D}_{\mathfrak{f}}^2+\mathcal{D}_{\mathfrak{g},\mathfrak{f}}^2.$

Homogeneous spaces

Suppose now that \mathfrak{k} integrates to a compact connected subgroup K of G, so that $\pi: G \to K \backslash G$ is a principal K-bundle.

Observe that $\mathfrak{m}:=\mathfrak{k}^\perp$ satisfies $[\mathfrak{k},\mathfrak{m}]\subset\mathfrak{m}$, so that $K\backslash G$ is a reductive homogeneous space.

Since $\mathcal{D}_{\mathfrak{g},\mathfrak{k}}$ is K-invariant, it follows that $c^V(\mathcal{D}_{\mathfrak{g},\mathfrak{k}})$ descends to a differential operator D^K on $L^2(K \setminus G, V \times_K G) \cong L^2(G, V)^K = H^K$.

In fact, it turns out that D^K , like D, is a Dirac-type operator, so that $((Cl(f^*) \otimes A)^K, H^K, D^K)$ is a spectral triple.

9

Homogeneous spaces

Suppose now that \mathfrak{k} integrates to a compact connected subgroup K of G, so that $\pi: G \to K \backslash G$ is a principal K-bundle.

Observe that $\mathfrak{m}:=\mathfrak{k}^\perp$ satisfies $[\mathfrak{k},\mathfrak{m}]\subset\mathfrak{m}$, so that $K\backslash G$ is a reductive homogeneous space.

Since $\mathcal{D}_{\mathfrak{g},\mathfrak{k}}$ is K-invariant, it follows that $c^V(\mathcal{D}_{\mathfrak{g},\mathfrak{k}})$ descends to a differential operator D^K on $L^2(K \setminus G, V \times_K G) \cong L^2(G, V)^K = H^K$.

In fact, it turns out that D^K , like D, is a Dirac-type operator, so that $((Cl(f^*) \otimes A)^K, H^K, D^K)$ is a spectral triple.

Question

How are (A, H, D) and $((Cl(f^*) \otimes A)^K, H^K, D^K)$ related?

Equivariant spectral triples

Let *K* be a compact connected Lie group.

A *K-spectral triple* consists of a spectral triple (A, H, D) and an even unitary representation $U: K \to U(H)$, such that:

1. A is a K-invariant subalgebra of C^1 -vectors for

$$\alpha: K \to \operatorname{Aut}(B(H)), \quad k \mapsto (T \mapsto U_k T U_k^*);$$

- 2. Dom D is a K-invariant subspace of C^1 -vectors for U;
- 3. D is K-invariant.

Running Example

We have $(A, H, D; U) := (C^{\infty}(G), L^{2}(G, V), c^{V}(\mathcal{D}_{\mathfrak{g}}); U^{V}|_{K}).$

Vertical geometries

Fix a normalised Ad-invariant inner product $\langle \,\cdot\,,\,\cdot\,
angle$ for ${\mathfrak k}$.

A vertical Clifford action is a G-equivariant $\mathbf{Z}/2$ -graded *-representation $c: \mathbf{Cl}(\mathfrak{f}^*) \to B(H)$, such that:

- 1. $\forall x \in Cl(\mathfrak{k}^*), \forall a \in \mathcal{A}, [c(x), a] = 0;$
- 2. $\forall x \in Cl(\mathfrak{k}^*), c(x) \text{ Dom } D \subset \text{Dom } D$;
- 3. $\forall X \in \mathfrak{k}, \ \mu(X) := -\frac{1}{2}[D, c(X^{\flat})] dU(X) \in B(H).$

Running Example

We can take $c := c^V$, which yields $\mu \equiv 0$.

Vertical geometries

Fix a normalised Ad-invariant inner product $\langle \,\cdot\,,\,\cdot\,
angle$ for ${\mathfrak k}$.

A vertical Clifford action is a G-equivariant $\mathbb{Z}/2$ -graded *-representation $c: \mathbb{C}(\mathfrak{f}^*) \to B(H)$, such that:

- 1. $\forall x \in Cl(\mathfrak{t}^*), \forall a \in \mathcal{A}, [c(x), a] = 0;$
- 2. $\forall x \in Cl(\mathfrak{k}^*), c(x) \text{ Dom } D \subset \text{Dom } D$;
- 3. $\forall X \in \mathfrak{k}, \ \mu(X) := -\frac{1}{2}[D, c(X^{\flat})] dU(X) \in B(H).$

Running Example

We can take $c := c^{V}$, which yields $\mu \equiv 0$.

Remarks

- 1. This generalises to $Z(M(A))_{(0)}^{K}$ -valued inner products on \mathfrak{t} .
- 2. This can be related to Alekseev–Meinrenken's notion of a connection for a t-DGA.

The vertical Dirac operator

The vertical Clifford action c extends (via dU on \mathfrak{k}) to a G-equivariant $\mathbb{Z}/2$ -graded *-representation of $\mathcal{W}(\mathfrak{k})$ by unbounded operators on $H^{\mathrm{alg}} := \bigoplus_{\pi \in \widehat{\mathcal{K}}} H_{\pi}$.

We can therefore define the vertical Dirac operator by

$$D_{V} := c(\mathcal{D}_{\mathfrak{k}}) = c(\varepsilon^{i})dU(\varepsilon_{i}) + \frac{1}{6}\langle \varepsilon_{i}, [\varepsilon_{j}, \varepsilon_{k}] \rangle c(\varepsilon^{i}\varepsilon^{j}\varepsilon^{k}). \tag{3}$$

Running Example

We have $D_V = c^V(\mathcal{D}_{\mathfrak{f}})$ for $\mathcal{D}_{\mathfrak{f}} \in \mathcal{W}(\mathfrak{f}) \subset \mathcal{W}(\mathfrak{g})$.

Remainders & horizontal Dirac operators

A remainder for (A, H, D; U; c) is an K-invariant odd self-adjoint operator $Z \in B(H)$; its horizontal Dirac operator is

$$D_h[Z] := D - D_V - Z. \tag{4}$$

Example

In the commutative case (with a generalised Dirac operator & totally geodesic orbits), the *canonical remainder* is

$$Z_c := c(\varepsilon^i)\mu(\varepsilon_i) - \frac{5}{12}\langle \varepsilon_i, [\varepsilon_j, \varepsilon_k] \rangle c(\varepsilon^i \varepsilon^j \varepsilon^k).$$

Running Example

We can take Z = 0, which yields $D_h[0] = c^V(\mathcal{D}_{\mathfrak{g},\mathfrak{k}})$.

Strong remainders

Let Z be a remainder for (A, H, D; U; c), and set

$$\Omega^1_{D-Z,\text{shor}}(A) := \overline{A \cdot [D-Z, A^G]}^{B(H)},$$

$$\Omega^1_{D_h[Z],\mathsf{shor}}(\mathsf{Cl}(\mathfrak{f}^*)\otimes\mathcal{A}):=\overline{(\mathsf{Cl}(\mathfrak{f}^*)\otimes A)\cdot [D_h[Z],(\mathsf{Cl}(\mathfrak{f}^*)\otimes\mathcal{A})^K]}^{B(H)}.$$

We say that *Z* is *strong* if:

$$\forall a \in \mathcal{A}, \quad [D_h[Z], a] \in \Omega^1_{D-Z, \text{shor}}(\mathcal{A}),$$
 (5)

$$\forall \omega \in \mathsf{Cl}(\mathfrak{f}^*) \otimes \mathcal{A}, \quad [D_h[Z], \omega] \in \Omega^1_{D_h[Z], \mathsf{shor}}(\mathsf{Cl}(\mathfrak{f}^*) \otimes \mathcal{A}). \quad (6)$$

Running example

Our operator $D_h[o] = c^{\vee}(\mathcal{D}_{g,f})$ satisfies

$$\forall f \in C^{\infty}(G), \quad [D_{h}[O], f] = c(\operatorname{Proj}_{\pi^{*}T^{*}(K \setminus G)} df) \in \Omega^{1}_{D, \operatorname{shor}}(C^{\infty}(G)).$$

Principal K-spectral triples

A principal K-spectral triple is (A, H, D; U; c) with **strong** remainder Z, such that:

- 1. the K-action α on $A := \overline{\mathcal{A}}^{B(H)}$ is free, i.e., $\overline{\operatorname{Span}}\{(k \mapsto \alpha_k(a_1)a_2) \mid a_1, a_2 \in A\} = C(K) \otimes A;$
- 2. the K-actions on $\operatorname{Cl}(\mathfrak{k}^*) \otimes A$ and H satisfy

$$\forall \pi \in \widehat{K}, \quad \overline{(Cl(\mathfrak{f}^*) \otimes A)_{\pi} \cdot H^K} = H_{\pi},$$

$$\{\omega \in Cl(\mathfrak{f}^*) \otimes A \mid \omega|_{H^K} = 0\} = \{0\},$$

$$\overline{(Cl(\mathfrak{f}^*) \otimes A)^K} = (Cl(\mathfrak{f}^*) \otimes A)^K.$$

Running example

Condition 1 is simply principality of $G woheadrightarrow K \backslash G$; condition 2 follows from tricks with associated vector bundles.

Analysis

Given a principal K-spectral triple (A, H, D; U; c; Z):

1. *c* encodes the vertical (intrinsic) geometry and index theory through

$$(\mathcal{A}, E, S; U^E) := (\mathcal{A}, \overline{\mathsf{Cl}(\mathfrak{k}^*) \otimes \mathsf{A}}_{(\mathsf{Cl}(\mathfrak{k}^*) \otimes \mathsf{A})^K}, \mathcal{D}_{\mathfrak{k}}; \mathsf{Ad}^* \otimes \alpha);$$

- 2. $D^K[Z] := D_h[Z]|_{H^K}$ encodes the horizontal geometry and index theory through $((Cl(\mathfrak{k}^*) \otimes A)^K, H^K, D^K[Z]; id);$
- 3. $[D_h[Z], \cdot]$ encodes vertical extrinsic geometry and the principal connection through

$$\begin{split} [D_h[Z],\cdot]: \mathcal{A} &\to \Omega^1_{D-Z,\mathsf{shor}}(\mathcal{A}), \\ [D_h[Z],\cdot]: \mathsf{Cl}(\mathfrak{f}^*) \otimes \mathcal{A} &\to \Omega^1_{D_h[Z],\mathsf{shor}}(\mathsf{Cl}(\mathfrak{f}^*) \otimes \mathcal{A}). \end{split}$$

Synthesis

Theorem (Ć.-Mesland)

Let (A, H, D; U; c; Z) be a principal K-spectral triple. Then:

- 1. $H\cong E\ \widehat{\otimes}_{(Cl(f^*)\otimes A)^K}\ H^K$ and $D_V\cong S\ \widehat{\otimes}\ id;$
- 2. $[D_h[Z], \cdot]$ canonically induces a K-equivariant Hermitian connection ∇_h on E, such that $D_h[Z] \cong \operatorname{id} \widehat{\otimes}_{\nabla_h} D^K[Z]$;
- 3. $[D] = [S] \widehat{\otimes}_{(Cl(\mathfrak{f}^*) \otimes A)^K} [D^K[Z]]$ in K-equivariant KK-theory.

In other words, in K-equivariant unbounded KK-theory,

$$\begin{split} (\mathcal{A}, H, D - Z; U) \\ & \cong (\mathcal{A}, E, S; U^{E}; \nabla) \, \widehat{\otimes}_{(\mathsf{Cl}(\mathfrak{f}^{*}) \otimes \mathcal{A})^{K}} \, ((\mathsf{Cl}(\mathfrak{f}^{*}) \otimes \mathcal{A})^{K}, H^{K}, D^{K}[Z]; \mathsf{id}). \end{split}$$

Synthesis

Theorem (Ć.-Mesland)

Let (A, H, D; U; c; Z) be a principal K-spectral triple. Then:

- 1. $H \cong E \widehat{\otimes}_{(Cl(f^*)\otimes A)^K} H^K$ and $D_v \cong S \widehat{\otimes} id$;
- 2. $[D_h[Z], \cdot]$ canonically induces a K-equivariant Hermitian connection ∇_h on E, such that $D_h[Z] \cong \operatorname{id} \widehat{\otimes}_{\nabla_h} D^K[Z]$;
- 3. $[D] = [S] \widehat{\otimes}_{(Cl(\mathfrak{f}^*) \otimes A)^K} [D^K[Z]]$ in K-equivariant KK-theory.

In other words, in K-equivariant unbounded KK-theory,

$$\begin{split} (\mathcal{A}, H, D - Z; U) \\ & \cong (\mathcal{A}, E, S; U^{E}; \nabla) \, \widehat{\otimes}_{(\mathsf{Cl}(\mathfrak{f}^{*}) \otimes \mathcal{A})^{K}} \, ((\mathsf{Cl}(\mathfrak{f}^{*}) \otimes \mathcal{A})^{K}, H^{K}, D^{K}[Z]; \mathsf{id}). \end{split}$$

Remark

The class [S] is the NC wrong-way class for $A \leftarrow A^K$.

A word from our sponsors

- 1. The quantum Weyl algebra $\mathcal{W}(\mathfrak{k})$ defines the natural K-*-algebra of vertical NC differential operators.
- 2. De Commer-Yamashita's proof that a **K**-*C**-algebra is principal iff it is saturated provides a NC proxy for Gleason's topological slice theorem.
- Recent work by Kaad–Van Suijlekom and by Van den Dungen allows for maximal generality in the non-unital case.

The only formal bottleneck to working with $\mathbf{K} := K_q$ is point 1.

A word from our sponsors

- 1. The quantum Weyl algebra $\mathcal{W}(\mathfrak{k})$ defines the natural K-*-algebra of vertical NC differential operators.
- 2. De Commer-Yamashita's proof that a **K**-*C**-algebra is principal iff it is saturated provides a NC proxy for Gleason's topological slice theorem.
- Recent work by Kaad-Van Suijlekom and by Van den Dungen allows for maximal generality in the non-unital case.

The only formal bottleneck to working with $\mathbf{K} := K_q$ is point 1.

Plea

Can one construct $\mathcal{W}(\mathfrak{f}_q) \ni \mathcal{D}_{\mathfrak{f}_q}$?

Gauge theory

Gauge comparability

Let $(A, H, D_0; U; c; o)$ be a principal K-spectral triple, such that $\forall x \in Cl(\mathfrak{f}^*), \quad [(D_0)_h[o], x] \in Cl(\mathfrak{f}^*) \cdot \Omega^1_{D_0, shor}(A).$ (7)

Let \mathfrak{D} be the set of all D on H making (A, H, D; U; c; o) into a principal K-spectral triple satisfying the analogue of (7).

Definition

We say that $D_1, D_2 \in \mathfrak{D}$ are gauge comparable if:

- 1. Dom $D_1 \cap \text{Dom } D_2$ is a joint core for D_1 and D_2 ;
- 2. $D_1 D_2 \in B(Dom D_V, H);$
- 3. $D_1 D_2$ supercommutes with $Cl(\mathfrak{f}^*)$ and \mathcal{A}^K .

Denote the gauge comparability class of D_0 by \mathfrak{At} (for Atiyah).

Gauge theory and KK-theory

Proposition (Ć.-Mesland)

For any $D_1, D_2 \in \mathfrak{D}$, if D_1 and D_2 are gauge comparable, then

$$[D_1] = [D_2], \quad [D_1^K] = [D_2^K]$$

in K-equivariant KK-theory.

Proof.

Since $D_1 - D_2 \in B(\text{Dom } D_V, H)$, it follows that $D_1^K - D_2^K \in B(H^K)$, so that $[D_1^K] = [D_2^K]$, and hence

$$[D_1] = [S] \widehat{\otimes}_{(\mathsf{Cl}(\mathfrak{f}^*) \otimes A)^K} [D_1^K] = [S] \widehat{\otimes}_{(\mathsf{Cl}(\mathfrak{f}^*) \otimes A)^K} [D_2^K] = [D_2]. \qquad \Box$$

Gauge theory and KK-theory

Proposition (Ć.-Mesland)

For any $D_1, D_2 \in \mathfrak{D}$, if D_1 and D_2 are gauge comparable, then

$$[D_1] = [D_2], \quad [D_1^K] = [D_2^K]$$

in K-equivariant KK-theory.

Proof.

Since $D_1 - D_2 \in B(\text{Dom } D_V, H)$, it follows that $D_1^K - D_2^K \in B(H^K)$, so that $[D_1^K] = [D_2^K]$, and hence

$$[D_1] = [S] \mathbin{\widehat{\otimes}}_{(\mathsf{Cl}(\mathfrak{f}^*) \otimes A)^K} [D_1^K] = [S] \mathbin{\widehat{\otimes}}_{(\mathsf{Cl}(\mathfrak{f}^*) \otimes A)^K} [D_2^K] = [D_2]. \qquad \Box$$

Remark

The non-unital version is an honest theorem.

Gauge transformations

Let's define a gauge transformation for $D \in \mathfrak{A}\mathfrak{t}$ to be an even K-invariant unitary $S \in U(H)$, (super)commuting with $Cl(\mathfrak{t}^*)$ and A^K , such that:

- 1. $SAS^* \subset A$;
- 2. $S \cdot \text{Dom } D \subset \text{Dom } D \text{ and } [D, S] \in B(\text{Dom } D_v, H);$
- 3. [D, S] supercommutes with $Cl(f^*)$ and A^K .

We define the gauge group \mathfrak{G} to be the group of all gauge transformations for one (and hence all!) $D \in \mathfrak{At}$.

The gauge group $\mathfrak G$ admits a gauge action on $\mathfrak A t$ by

$$\mathfrak{G}\times\mathfrak{A}\mathfrak{t}\ni(S,D)\mapsto SDS^*\in\mathfrak{A}\mathfrak{t}.$$

Relative gauge potentials

Let's define a relative gauge potential for $D \in \mathfrak{A}\mathfrak{t}$ to be an odd K-invariant symmetric operator ω on $\mathsf{Dom}\,\mathsf{D}_{\mathsf{V}}$, such that:

- 1. $\forall a \in \mathcal{A}, [\omega, a] \in \Omega^1_{D, shor}(\mathcal{A});$
- 2. $\omega \in B(Dom D_v, H)$;
- 3. ω supercommutes with $Cl(\mathfrak{f}^*)$ and \mathcal{A}^K .

We define the space of relative gauge potentials \mathfrak{at} to be the **R**-vector space of all relative gauge potentials for one (and hence all!) $D \in \mathfrak{At}$.

The gauge group $\mathfrak G$ acts (naïvely) on $\mathfrak a\mathfrak t$ by

$$\mathfrak{G}\times\mathfrak{at}\ni(S,\omega)\mapsto S\omega S^*\in\mathfrak{at}.$$

The affine picture

Theorem (Ć.-Mesland)

- 1. The space $\mathfrak{A}\mathfrak{t}$ is an affine space modelled on $\mathfrak{A}\mathfrak{t}$ with subtraction $\mathfrak{A}\mathfrak{t} \times \mathfrak{A}\mathfrak{t} \ni (D_1, D_2) \mapsto D_1 D_2 \in \mathfrak{A}\mathfrak{t}$.
- 2. For any fixed $D \in \mathfrak{At}$, the homeomorphism

$$\mathfrak{At} \to \mathfrak{at}, \quad D' \mapsto D' - D$$

intertwines the gauge action of ${\mathfrak G}$ on ${\mathfrak A}{\mathfrak t}$ with

$$\mathfrak{G} \times \mathfrak{at} \ni (S, \omega) \mapsto S[D, S^*] + S\omega S^* \in \mathfrak{at}.$$

The affine picture

Theorem (Ć.-Mesland)

- 1. The space $\mathfrak{A}\mathfrak{t}$ is an affine space modelled on $\mathfrak{A}\mathfrak{t}$ with subtraction $\mathfrak{A}\mathfrak{t} \times \mathfrak{A}\mathfrak{t} \ni (D_1, D_2) \mapsto D_1 D_2 \in \mathfrak{A}\mathfrak{t}$.
- 2. For any fixed $D \in \mathfrak{At}$, the homeomorphism

$$\mathfrak{At} \to \mathfrak{at}, \quad D' \mapsto D' - D$$

intertwines the gauge action of ${\mathfrak G}$ on ${\mathfrak A}{\mathfrak t}$ with

$$\mathfrak{G} \times \mathfrak{at} \ni (S, \omega) \mapsto S[D, S^*] + S\omega S^* \in \mathfrak{at}.$$

Remarks

- 1. Everything in sight can be suitably topologised.
- 2. Current technology limits us to the unital case for this!

A concrete noncommutative example

Fix $e^{i\theta} \in U(1)$, which generates a **Z**-action on U(1). Let:

- $\cdot \not \! D_{U(1)} \coloneqq \begin{pmatrix} \circ & i \\ i & \circ \end{pmatrix} \frac{d}{dt};$
- $N: c_c(\mathsf{Z},\mathsf{C}^2) o \ell^2(\mathsf{Z},\mathsf{C}^2)$ be given by

$$N(\delta_n \otimes v) := \delta_n \otimes 2\pi ni \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} v;$$

- Y : $U(1) \rightarrow U(\ell^2(\mathbf{Z}, \mathbf{C}^2))$ be the dual representation;
- $(A, H; U) := (Z \ltimes C^{\infty}(U(1)), \ell^{2}(Z, C^{2}) \widehat{\otimes} L^{2}(U(1), C^{2}), Y \widehat{\otimes} id));$
- $D_0 := N \widehat{\otimes} \operatorname{id} + \operatorname{id} \widehat{\otimes} \not \! D_{U(1)};$
- $c: \mathfrak{u}(1)^* = i\mathbf{R} \ni -i \mapsto \begin{pmatrix} \circ & i \\ i & \circ \end{pmatrix} \widehat{\otimes} id \in \mathcal{B}(H).$

Then $(A, H, D_0; U; c; 0)$ is a principal U(1)-spectral triple.

If $\frac{\theta}{2\pi}$ is irrational, then this recovers the irrational NC 2-torus T_{θ}^2 .

The machinery in action

Proposition

We have compatible isomorphisms

$$\{\omega \in \mathfrak{at} \mid \omega|_{H^{U(1)}} = 0\} \cong Z^{1}\left(\mathbf{Z}, \Omega_{cts}^{1}(U(1), \mathbf{R})\right),$$

$$\{\mathbf{S} \in \mathfrak{G} \mid \mathbf{S}|_{H^{U(1)}} = \mathrm{id}\} \cong Z_{b}^{1}\left(\mathbf{Z}, C^{\infty}(U(1), U(1))\right).$$

Example

For any $\lambda \in \mathbf{R}$, the element $\omega_{\lambda} \in \mathfrak{at}$ corresponding to

$$(n \mapsto \lambda n \cdot dt) \in Z^1(\mathbf{Z}, \Omega^1_{cts}(U(1), \mathbf{R}))$$

yields $D_0 + \omega_{\lambda} \in \mathfrak{At}$ corresponding to the conformal class of the flat metric on T^2_{θ} parametrized by $\tau = \lambda + i$.