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Abstract. We strengthen the orientability condition in our definition of θ-
commutative spectral triple to resolve an issue with the proof of our main

theorem. In particular, we show that this corrected condition is still satisfied

in the relevant commutative case.

In [1], we extended Connes’s reconstruction theorem for commutative spectral
triples [2] to Connes–Landi deformations of commutative spectral triples. This
involved suitably generalizing Connes’s notion of commutative spectral triple to
the relevant equivariant case [1, Def. 4.5] and proving explicit compatibility of this
definition with Connes–Landi deformation [1, Thm 4.10]. However, our orientability
condition [1, Def. 4.5.(3)] is too weak for the relevant part of our compatibility
proof [1, §4.2.2]. In this erratum, we strengthen the orientability condition as
needed and check that it remains consistent with the relevant commutative case.

From now on, we fix a compact Abelian Lie group G with Pontrjagin dual Ĝ,
and we reprise the notation and terminology of [1]. Moreover, given a Fréchet

G-∗-algebra A, we set Afin :=
⊕alg

x∈Ĝ
Ax.

We now explain the problem with our orientability condition—and its resolution.
Let A be a nuclear Fréchet G-∗-algebra, p ∈ N, and Θ : Ĝ × Ĝ → T a bicharacter
representing θ ∈ H2(Ĝ,T). To prove stability of orientability under Connes–Landi

deformation by θ, we would like to use a map Θ∗ : A⊗(p+1) → A⊗(p+1)
Θ that satisfies

(1) Θ∗(a0 ⊗ a1 ⊗ · · · ⊗ ap) := exp

2πi
∑

1≤j<k≤p

Θ(xj ,xk)

a0 ⊗ a1 ⊗ · · · ⊗ ap

for all x0,x1, . . . ,xp ∈ Ĝ and a0 ∈ Ax0
, a1 ∈ Ax1

, . . . , ap ∈ Axp
. Despite the

claim of [1, Lemma 4.15], this will generally define a map from the algebraic tensor

product A⊗(p+1) to the topological tensor product A⊗̂(p+1)
Θ . Nonetheless, we do

obtain a map Θ∗ : (Afin)⊗(p+1) → (Afin
Θ )⊗(p+1). This motivates us to correct [1,

Def. 4.5.(3)] by replacing A⊗(p+1) by (Afin)⊗(p+1) wherever it appears.

Correction. In [1, Def. 4.5], we correct condition (3) to read as follows.

(3) Orientability: Define ϵθ : (Afin)⊗(p+1) → (Afin
Θ )⊗(p+1) by setting

ϵθ(a0 ⊗ a1 ⊗ · · · ⊗ ap)

:=
1

p!

∑
σ∈Sp

exp

2πi
∑
j<k

σ(j)>σ(k)

ι(θ)(xj ,xk)

(−1)σa0 ⊗ aσ(1) ⊗ · · · ⊗ aσ(p)
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for all x0,x1, . . . ,xp ∈ Ĝ and a0 ∈ Ax0
, a1 ∈ Ax1

, . . . , ap ∈ Axp
, and

say that c ∈ A ⊗ (Afin)⊗p is θ-antisymmetric if ϵθ(c) = c. There exists
a G-invariant θ-antisymmetric c ∈ (Afin)⊗(p+1) such that χ := πD(c) is a
self-adjoint unitary satisfying, for all a ∈ A, the equations

L(a)χ = χL(a), [D,L(a)]χ = (−1)p+1χ[D,L(a)].

We can now straightforwardly correct [1, §4.2.2] by replacing every instance of

A⊗(p+1) and A⊗(p+1)
Θ by (Afin)⊗(p+1) and (Afin

Θ )⊗(p+1), respectively. The only non-
trivial point to check is that a G-equivariant concrete commutative spectral triple
is still 0-commutative with respect to the corrected definition.

Proposition. Let (X, g) be a p-dimensional compact oriented Riemannian G-
manifold, E → X a G-equivariant Hermitian vector bundle, and D a G-invariant
self-adjoint Dirac-type operator on E. Then (C∞(X), L2(X,E), D) defines a p-
dimensional 0-commutative spectral triple with respect to the corrected definition.

Lemma 1 ([1, Proof of Lemma 2.33]). Let A be a Fréchet pre-G-C∗-algebra, E
a Hermitian f.g.p. G-A-module, and {ξ1, . . . , ξn} ⊂ E a finite algebraic generating
set for the right A-module E. If {η1, . . . , ηn} ⊂ E satisfies ∥ξi − ηi∥ < 1

n for each
i ∈ {1, . . . , n}, then it algebraically generates the right A-module E.

Lemma 2. Let X be a compact G-manifold. There exist x1, . . . ,xm ∈ Ĝ and non-
zero b1 ∈ C∞(X)x1

, . . . , bm ∈ C∞(X)xm
such that {db1, . . . ,dbm} algebraically

generates the C∞(X)-module Ω1(X).

Proof. First, using a finite atlas for X together with a subordinate smooth parti-
tion of unity, construct a1, . . . , an ∈ C∞(X) such that {da1, . . . ,dan} algebraically
generates the C∞(X)-module Ω1(X). Next, fix a G-invariant Riemannian metric
g on X, thereby making Ω1(X) into a Hermitian f.g.p. G-C∞(X)-module suit-
ably topologized by a countable family of norms including the pre-Hilbert C∞(X)-
module norm ∥·∥ on Ω1(X) induced by g, see [1, §§2.2, 2.4]. Now, for each

i ∈ {1, . . . , n}, since the Fourier expansion dai =
∑

x∈Ĝ d̂ai(x) is, in particular,

absolutely convergent with respect to ∥·∥, there exist finite Fi ⊂ Ĝ such that∥∥∥dai −∑x∈Fi
d̂ai(x)

∥∥∥ < 1
n . Thus, by G-equivariance and Fréchet-continuity of

d : C∞(X) → Ω1(X), it follows, for each i ∈ {1, . . . , n}, that dai = da′i, where
a′i :=

∑
x∈Fi

âi(x) ∈ C∞(X)fin. By Lemma 1, it now follows that {da′1, . . . ,da′m}
algebraically generates the C∞(X)-module Ω1(X). Finally, take {b1, . . . , bm} to be

the distinct non-zero elements of the finite set {âi(x) : 1 ≤ i ≤ n, x ∈ Ĝ}, whence,
for each k ∈ {1, . . . ,m}, we determine xk ∈ Ĝ by the inclusion bk ∈ C∞(X)xk

. □

Proof of the Proposition. The only remaining issue is proving that the corrected
orientability condition is satisfied. Let ⋆ be the G-invariant Hodge star operator
on (M, g) with its given orientation. Let π∧ : C∞(X)⊗(p+1) → Ωp(X) denote the
surjective G-equivariant left C∞(X)-linear map given by

π∧(c0 ⊗ c1 ⊗ · · · ⊗ cp) := c0 · dc1 ∧ · · · ∧ dcp

for all c0, c1, . . . , cp ∈ C∞(X). By [2, Proof of Thm 11.4], mutatis mutandis, it

therefore suffices to find G-invariant 0-antisymmetric c ∈ (C∞(X)fin)⊗(p+1) such
that π∧(c) = ⋆(1).
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By Lemma 2, there exist characters x1, . . . ,xm ∈ Ĝ and non-zero isotypical
vectors b1 ∈ C∞(X)x1 , . . . ,bm ∈ C∞(X)xm such that {db1, . . . ,dbm} algebraically
generates the C∞(X)-module Ω1(X). Given i1, . . . , ip ∈ {1, . . . ,m}, since

⋆(dbi1 ∧ · · · ∧ dbip)(t · x) = exp

(
2πi

p∑
k=1

⟨xik , t⟩

)
⋆ (dbi1 ∧ · · · ∧ dbip)(x)

for all x ∈ X, and t ∈ G, it follows that the zero locus of dbi1 ∧· · ·∧dbip ∈ Ωp(X) is
a G-invariant subset of X. Thus, the compact G-manifold X admits a finite cover
{U1, . . . , Uq} by G-invariant open sets, where, for each 1 ≤ j ≤ q, there exist indices
1 ≤ ij;1 < · · · < ij;p ≤ m such that dbij;1 ∧ · · · ∧ dbij;p is nowhere vanishing on Uj ;

for convenience, set yj :=
∑p

k=1 xij;k for each j ∈ {1, . . . , q}. Finally, fix a G-
invariant smooth partition of unity {ρ1, . . . , ρq} for X subordinate to {U1, . . . , Uq},
and observe that ⋆(1) =

∑q
j=1 aj · dbij;1 ∧ · · · ∧ dbij;p , where

aj := ρj · ⋆(dbij;1 ∧ · · · ∧ dbij;p)
−1 ∈ C∞

c (Uj) ∩ C∞(X)−yj .

for each j ∈ {1, . . . , q}. Thus, at last, we may simply take

c :=

q∑
j=1

1

p!

∑
σ∈Sp

(−1)σaj ⊗ bij;σ(1)
⊗ · · · ⊗ bij;σ(p)

. □
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[1] Branimir Ćaćić, A reconstruction theorem for Connes-Landi deformations of commutative

spectral triples, J. Geom. Phys. 98 (2015), 82–109.

[2] Alain Connes, On the spectral characterization of manifolds, J. Noncommut. Geom. 7 (2013),
no. 1, 1–82.

Department of Mathematics & Statistics, University of New Brunswick, PO Box

4400, Fredericton, NB, E3B 5A3, Canada
Email address: bcacic@unb.ca


	References

