Quantum principal U(1)-bundles <u>Differential</u>, Riemannian, and metric geometry

51st Canadian Operator Symposium May 24, 2023

Branimir Ćaćić

University of New Brunswick, Fredericton

Shamless self-promotion

B. Ć., Geometric foundations for classical U(1)-gauge theory on noncommutative manifolds, arXiv: 2301.01749.

B. Ć. and B. Mesland, *Gauge theory on noncommutative Riemannian principal bundles*, Commun. Math. Phys. 388, 107-198 (2021).

B. Ć. and T. Venkata Karthik, Euclidean Maxwell's equations on noncommutative Riemannian manifolds, in preparation.

Existence of electromagnetic potentials

Problem

Let M be a closed manifold; Let $F \in \Omega^2(M, \mathbf{R})$ be closed.

Find $A \in \Omega^1(M, \mathbf{R})$ satisfying F = dA.

Global solutions exist IFF [F] = 0 in $H^2(M, \mathbf{R})$.

A *local* solution A on U defines a connection d + iA on the trivial line bundle $U \times \mathbf{C}$ with curvature $-i(d + iA)^2 = F \upharpoonright_U$.

Modified Problem (Weyl, Fock, London)

Even if $[F] \neq 0$, find a Hermitian line bundle with connection (L, ∇) on M with curvature $-i\nabla^2 = F$.

Dirac quantisation

Theorem (Kobayashi, Weil, Kostant)

The following are equivalent.

- 1. There exists a Hermitian line bundle with connection (L, ∇) on M with curvature F.
- 2. The 2-form F is integral, i.e., $\int_{\Sigma} F \in 2\pi \mathbf{Z}$ for every closed surface S in M.

Example

The Fubini–Study form $\omega_{FS}:=\frac{1}{(1+z\overline{z})^2}\,\mathrm{d}\,z\wedge\mathrm{d}\,\overline{z}\,\mathrm{on}\,\mathbf{CP}^1\,\mathrm{satisfies}\,[\omega_{FS}]\neq\mathrm{o}.$

The 2-form $2\omega_{FS}$ has integral periods since $\int_{{\bf CP}^1} 2\omega_{FS} = 2\pi$.

The Chern connection ∇ on $\mathfrak{O}(-1) \to \mathbf{CP}^1$ has curvature $2\omega_{FS}$.

Principal U(1)-bundles with connection

Theorem

- 1. If (P, θ) is a principal U(1)-bundle with connection on M, then the irrep $-\mathbf{1} \coloneqq (\mathbf{C}, z \mapsto z^{-1} \text{ id})$ yields the associated Hermitian line bundle with connection $(P \times_{-\mathbf{1}} \mathbf{C}, \mathbf{d}^{\theta})$.
- 2. If (L, ∇) is a Hermitian line bundle with connection on M, then there exists an essentially unique principal U(1)-bundle with connection (P, θ) on M, such that $(P \times_{-1} \mathbf{C}, \mathbf{d}^{\theta}) \cong (L, \nabla)$.

Example

Give $\mathbf{S}^3 \subset \mathbf{C}^2$ the diagonal action of U(1); let $\theta_{Dirac} \coloneqq \overline{z_1} \, \mathrm{d} \, z_1 + \overline{z_2} \, \mathrm{d} \, z_2$.

The Hopf fibration with Dirac monopole connection (\mathbf{S}^3 , θ_{Dirac}) defines the essential unique principal U(1)-bundle with connection on \mathbf{CP}^1 , such that

$$(\mathbf{S}^3 \times_{-1} \mathbf{C}, \mathbf{d}^{\Theta_{Dirac}}) \cong (\mathfrak{O}(-1), \nabla).$$

Why care about the noncommutative case?

Sales Pitch

Noncommutative geometry permits the conceptually economical (semi-classical) modelling of quantum physics as classical physics on noncommutative manifolds.

Aspirational Example (cf. Majid et al.)

Approximate quantum gravity coupled with U(1)-gauge theory.

Aspirational Example (cf. Nekrasov–Schwarz, Peterka)

Construct noncommutative U(1)-instantons where they don't exist commutatively.

Aspirational Example (cf. Avron–Seiler–Zograf, Hannabuss–Mathai–Thiang)

Broaden the mathematical toolkit for physics around the quantum Hall effect.

The quantum 3-sphere

Fix $q \in (0,1)$.

Definition (Woronowicz, Vaksman–Sojbel'man)

The quantum 3-sphere is the universal unital pre-C*-algebra $\mathcal{O}_q(\mathbf{S}^3)$ with generators z_0 and z_1 and relations

$$z_0 z_1 = q z_1 z_0$$
, $z_0 z_1^* = q z_1^* z_0$, $z_1^* z_1 = z_1 z_1^*$, $z_0^* z_0 + z_1^* z_1 = 1$, $z_0 z_0^* + q^2 z_1 z_1^* = 1$.

Heuristic

At q=1, recover the dense *-subalgebra of spherical harmonics in $C(\mathbf{S}^3)$.

Question

How do we make $\mathcal{O}_q(\mathbf{S}^3)$ into a noncommutative (Riemannian) manifold or quantum metric space?

The quantum projective line

Say that a U(1)-action on a unital pre- C^* -algebra P is finite-type whenever

$$P = \bigoplus_{m \in \mathbb{Z}} P_m, \qquad P_m := \{ p \in P \mid \forall w \in U(1), \ w \triangleright p = w^m p \}.$$

Definition (Podles)

The quantum projective line is $\mathcal{O}_q(\mathbf{CP^1}) \coloneqq \mathcal{O}_q(\mathbf{S^3})^{\mathsf{U}(1)}$, where $\mathcal{O}_q(\mathbf{S^3})$ has the unique finite-type $\mathsf{U}(1)$ -action satisfying $\{z_0, z_1\} \subset \mathcal{O}_q(\mathbf{S^3})_1$.

Heuristic

At q=1, recover the dense *-subalgebra of spherical harmonics in $C(\mathbf{CP}^1)$.

Goal

LIFT GEOMETRY FROM $\mathcal{O}_q(\mathbf{CP}^1)$ to $\mathcal{O}_q(\mathbf{S}^3)$.

The quantum Hopf fibration

Definition (cf. Năstăsescu–Van Ostaeyen, Sitarz–Venselaar, Arici–Kaad–Landi)

Let P be a unital pre- C^* -algebra with a finite-type U(1)-action. Then P is a topological quantum principal U(1)-bundle over $P^{U(1)}$ whenever:

- 1. there exists $(e_i)_{i=1}^m$ in P_1 satisfying $\sum_{i=1}^m e_i e_i^* = 1$;
- 2. there exists $(f_j)_{j=1}^n$ in P_1 satisfying $\sum_{j=1}^n f_j^* f_j = 1$.

Example (Brzeziński–Majid)

The quantum Hopf fibration is the topological quantum principal U(1)-bundle $\mathcal{O}_q(\mathbf{S}^3)$ over $\mathcal{O}_q(\mathbf{CP}^1)$.

Proof

- 1. The family (z_0,qz_1) in $\mathcal{O}_q(\mathbf{S}^3)_1$ satisfies $z_0z_0^*+(qz_1)(qz_1)^*=1$.
- 2. The family (z_0, z_1) in $\mathcal{O}_q(\mathbf{S}^3)_1$ satisfies $z_0^* z_0 + z_1^* z_1 = 1$.

The quantum Hopf line bundle

Definition (Rieffel; cf. Kajiwara–Watatani)

Let B be a unital pre- C^* -algebra. A Hermitian line B-bimodule is a B-bimodule E with left, right B-valued inner products $E(\cdot, \cdot)$, $(\cdot, \cdot)_E$, with:

- 1. $||E(xb,xb)|| \le ||b||^2 ||E(x,x)||$ and $||(bx,bx)E|| \le ||b||^2 ||(x,x)E||$;
- 2. $E(x,yb) = E(xb^*,y)$ and $(x,by)_E = (b^*x,y)_E$;
- 3. there exist $(e_i)_{i=1}^m$, $(f_i)_{i=1}^n$ in E with $\sum_{i=1}^m E(e_i, e_i) = 1 = \sum_{i=1}^n (f_i, f_i)_E$;
- 4. $E(x, y) \cdot z = x \cdot (y, z)_E$.

Example (Hajac–Majid)

Each $\mathcal{L}_m := \mathcal{O}_q(\mathbf{S}^3)_m$ defines a Hermitian line $\mathcal{O}_q(\mathbf{CP}^1)$ -bimodule with respect to $f_{x,y}(x,y) := xy^*$ and $(x,y)_{f_{x,y}} := x^*y$.

In particular, $\mathcal{L}_1 := \mathcal{O}_q(\mathbf{S}^3)_1$ is the quantum Hopfline bundle.

Pimsner's construction

Theorem (Arici–Kaad–Landi; cf. Pimsner, Abadie–Eilers–Exel, Beggs–Brzeziński) Let B be a unital pre-C*-algebra.

- 1. Let P be a topological quantum principal U(1)-bundle over B. Then P_1 is a Hermitian line B-bimodule with $P_{P_1}(x,y) := xy^*, (x,y)_{P_2} := x^*y$.
- 2. Let E be a Hermitian line B-bimodule. There exists an essentially unique topological quantum principal U(1)-bundle P over B with $P_1 \cong E$.

Example

The quantum Hopf fibration $\mathcal{O}_q(\mathbf{S}^3)$ is the essentially unique topological quantum principal U(1)-bundle over B satisfying $\mathcal{O}_a(\mathbf{S}^3)_1 \cong \mathcal{L}_1$.

Strategy

Use the quantum Hopf line bundle \mathcal{L}_1 to lift geometry from $\mathcal{O}_q(\mathbf{CP}^1)$ to $\mathcal{O}_{a}(\mathbf{S}^{3})$ qua total space of the quantum Hopf fibration.

Pimsner's construction unpacked

Let B be a unital pre- C^* -algebra.

Theorem (Rieffel, Brown–Green–Rieffel, Buss–Meyer–Zhu)

The Hermitian line B-bimodules form a coherent 2-group PIC(B).

Proposition (d'après Joyal–Street)

For every object g of a coherent 2-group G, there exists an essentially unique weak monoidal functor $F: \mathbf{Z} \to G$, such that $F(1) \cong g$.

Theorem (Ć.)

Every weak monoidal functor between coherent 2-groups canonically defines a bar functor à la Beggs–Majid (involutive functor à la Egger).

Corollary (Buss–Meyer–Zhu, Schwieger–Wagner)

A weak monoidal functor from a group Γ to Pic(B) defines a saturated pre-Fell bundle over Γ with fibre B over e.

The quantum enveloping algebra of $\mathfrak{su}(2)$

Definition (Kuliš-Rešetihin)

The quantum enveloping algebra of $\mathfrak{su}(2)$ is the unital *-algebra $\mathcal{U}_q(\mathfrak{su}(2))$ with generators E,F,K and K^{-1} and relations

$$KK^{-1} = K^{-1}K = 1$$
, $KEK^{-1} = qE$, $KFK^{-1} = q^{-1}F$,
 $EF - FE = \frac{1}{q-q^{-1}}(K^2 - K^{-2})$,
 $E^* = F$, $F^* = E$, $K^* = K$, $(K^{-1})^* = K^{-1}$.

Definition (Skljanin)

A representation ϑ of $\mathcal{U}_q(\mathfrak{su}(2))$ on a unital *-algebra P is a Hopfaction if:

$$\partial_K(xy) = \partial_K(x)\partial_K(y);$$

$$\partial_X(xy) = \partial_X(x)\partial_K(y) + \partial_{K^{-1}}(x)\partial_X(y), \quad X \in \{E, F\};$$

$$\partial_K(x^*) = \partial_{K^{-1}}(x)^*, \quad \partial_F(x^*) = -q\partial_F(x)^*, \quad \partial_F(x^*) = -q^{-1}\partial_F(x)^*.$$

The translation action on $\mathcal{O}_a(\mathbf{S}^3)$

Theorem (Masuda–Mimachi–Nakagami–Noumi–Saburi–Ueno)

There exists a unique Hopf action ∂ of $\mathcal{U}_q(\mathfrak{su}(2))$ on $\mathcal{O}_q(\mathbf{S}^3)$, such that

$$\partial_K(z_0) = q^{-1/2}z_0, \qquad \qquad \partial_K(z_1) = q^{-1/2}z_1,
\partial_E(z_0) = 0, \qquad \qquad \partial_E(z_1) = 0,
\partial_F(z_0) = -qz_1^*, \qquad \qquad \partial_F(z_1) = z_0^*.$$

DIFFERENTIAL GEOMETRY

Moreover, for all $m \in \mathbf{Z}$.

$$\partial_K |_{\mathcal{L}_m} = q^{-m/2} \operatorname{id}_{\mathcal{L}_m}, \quad \partial_E(\mathcal{L}_m) \subseteq \mathcal{L}_{m-2}, \quad \partial_F(\mathcal{L}_m) \subseteq \mathcal{L}_{m+2}.$$

Heuristic

"By setting $K = q^{H/2}$ and taking $q \nearrow 1$, we recover the infinitesimal right translation action of $\mathfrak{su}(2)$ on $SU(2) \cong \mathbb{S}^3$."

Differential calculus on $\mathcal{O}_a(\mathbf{CP}^1)$

Theorem (Podleś; cf. Majid, Landi–Reina–Zampini, Khalkhali–Landi–Van Suijlekom)

There exists an essentially unique 2-dimensional left $\mathcal{O}_q(SU(2))$ -covariant *-exterior algebra $(\Omega_q(\mathbf{CP}^1), d)$ on $\mathcal{O}_q(\mathbf{CP}^1)$.

1. As a $\mathcal{O}_q(\mathbf{CP}^1)$ -bimodule, let $\Omega_q(\mathbf{CP}^1) := \bigoplus_{k=0}^2 \Omega_d^k(\mathbf{CP}^1)$, where

$$\Omega_q^{\rm O}(\mathbf{C}\mathbf{P}^{\! 1}) \coloneqq \mathcal{O}_q(\mathbf{C}\mathbf{P}^{\! 1}) \eqqcolon \Omega_q^2(\mathbf{C}\mathbf{P}^{\! 1}), \quad \ \Omega_q^1(\mathbf{C}\mathbf{P}^{\! 1}) \coloneqq \mathcal{L}_{-2} \oplus \mathcal{L}_2.$$

2. Define multiplication, * on $\Omega_a^1(\mathbf{CP}^1)$ by

$$(\omega_+,\omega_-)\cdot(\eta_+,\eta_-)\coloneqq \mathrm{i}(\omega_+\eta_--q^{-2}\omega_-\eta_+),\quad \ast\coloneqq\begin{pmatrix} \circ & q^{-2}\ast\\ q^2\ast & \circ\end{pmatrix}.$$

- 3. Let $\partial_+ := \partial_{a^{1/2}EK}$ and $\partial_- := \partial_{a^{-1/2}EK}$ on $\mathcal{O}_a(\mathbf{S}^3) = \bigoplus_{m \in \mathbf{Z}} \mathcal{L}_m$.
- 4. Define $d: \Omega_q(\mathbf{CP}^1) \to \Omega_q^{\bullet+1}(\mathbf{CP}^1)$ by

$$\mathsf{d}^{(\circ)} \coloneqq -\mathrm{i} \begin{pmatrix} \mathfrak{d}_+ \\ \mathfrak{d}_- \end{pmatrix}, \qquad \quad \mathsf{d}^{(1)} \coloneqq \begin{pmatrix} -q^{-2}\mathfrak{d}_- & \mathfrak{d}_+ \end{pmatrix}.$$

The *q*-monopole connection

Theorem (Landi–Reina–Zampini, Khalkhali–Landi–Van Suijlekom)

The following constructs a Hermitian bimodule connection (σ_m, ∇_m) on \mathcal{L}_m .

- 1. Define $\mu_{j,k}: \mathcal{L}_j \otimes_{\mathcal{O}_q(\mathbf{CP}^1)} \mathcal{L}_k \xrightarrow{\cong} \mathcal{L}_{j+k}$ by $\mu_{j,k}(x \otimes y) \coloneqq xy$.
- 2. Define $\nabla_m:\mathcal{L}_m\otimes_{\mathcal{O}_q(\mathbf{CP}^1)}\Omega_q^{\bullet}(\mathbf{CP}^1)\to\mathcal{L}_m\otimes_{\mathcal{O}_q(\mathbf{CP}^1)}\Omega_q^{\bullet+1}(\mathbf{CP}^1)$ by

$$\nabla_m^{(\circ)} \coloneqq -\mathrm{i} \begin{pmatrix} \mu_{m,-2}^{-1} \circ \partial_+ \\ \mu_{m,2}^{-1} \circ \partial_- \end{pmatrix}, \quad \nabla_m^{(1)} \coloneqq \begin{pmatrix} -q^{-2}\partial_- \circ \mu_{m,-2} & \partial_+ \circ \mu_{m,2} \end{pmatrix}.$$

3. Recover $\sigma_m:\Omega_q^{\bullet}(\mathbf{CP}^1)\otimes_{\mathcal{O}_q(\mathbf{CP}^1)}\mathcal{L}_m\stackrel{\cong}{\longrightarrow}\mathcal{L}_m\otimes_{\mathcal{O}_q(\mathbf{CP}^1)}\Omega_q^{\bullet}(\mathbf{CP}^1)$ as

$$\sigma_{\textit{m}}^{(\text{o})} \coloneqq \mu_{\textit{m},\text{o}}^{-1} \circ \mu_{\text{o},\textit{m}} \eqqcolon \sigma_{\textit{m}}^{(2)}, \quad \sigma_{\textit{m}}^{(1)} \coloneqq \left(\begin{smallmatrix} \mu_{\textit{m},-2}^{-1} \circ \mu_{-2,\textit{m}} & \text{o} \\ \text{o} & \mu_{\textit{m},2}^{-1} \circ \mu_{2,\textit{m}} \end{smallmatrix}\right).$$

Theorem (Díaz García–Krutov–Ó Buachalla–Somberg–Strung)

The connection ∇_m is the unique left $\mathcal{O}_q(\mathsf{SU}(2))$ -covariant connection on \mathcal{L}_m .

The differential Picard 2-group

Theorem (Ć.; cf. Beggs–Majid)

Let B be a unital pre-C*-algebra with *-exterior algebra (Ω_B, d_B) . The Hermitian line B-bimodules with connection form a coherent 2-group $\mathsf{DPIC}(B)$ with group of isomorphism classes $\mathsf{DPic}(B)$.

Example

If X is a closed manifold, then $\mathsf{DPic}(C^\infty(X)) \cong \check{H}^2(X) \rtimes \mathsf{Diff}(X)$.

Example (Ć.–Venkata Karthik; cf. Elliott, Kodaka, Nawata–Watatani)

If $\theta \in (\texttt{o}, \texttt{1}) \setminus \boldsymbol{Q}$ is Diophantine (e.g., algebraic), then

$$\mathsf{DPic}(C^\infty_\theta(\mathbf{T}^2)) \cong \begin{cases} \left(\frac{(\mathbf{R}^2)^* \times \mathbf{R}^2}{L_\theta} \rtimes \mathsf{SL}(\mathbf{2}, \mathbf{Z})\right) \rtimes \mathbf{Z} & \text{if θ quadratic,} \\ \frac{(\mathbf{R}^2)^* \times \mathbf{R}^2}{L_\theta} \rtimes \mathsf{SL}(\mathbf{2}, \mathbf{Z}) & \text{else,} \end{cases}$$

where $L_{\theta} := \langle (2\pi e_1^T; -2\pi\theta e_2), (2\pi e_2^T; 2\pi\theta e_1), (0; 2\pi e_1), (0; 2\pi e_2) \rangle$.

Curvature and its discontents

Let *B* be a unital pre- C^* -algebra with *-exterior algebra (Ω_B, d_B) .

Let (E, σ_E, ∇_E) be a Hermitian line B-bimodule with Hermitian bimodule connection; the *curvature* of $[E, \nabla_E]$ is closed central $\mathbf{F}_{[E, \nabla_E]} \in (\Omega_B^2)_{\mathrm{sa}}$ uniquely determined by $\nabla_F^2(e) = e \otimes i\mathbf{F}_{[E, \nabla_F]}$.

Definition (Ć.)

Suppose that $\mathbf{F}_{[E,\nabla_E]} \neq 0$. The vertical deformation parameter of $[E,\nabla_E]$, if it exists, is $\kappa_{[E,\nabla_E]} \in \mathbf{R}^{\times}$ uniquely determined by

$$\sigma_E^{-1}(\textbf{e} \otimes \textbf{F}_{[\textbf{E},\nabla_E]}) = \kappa_{[\textbf{E},\nabla_E]} \textbf{F}_{[\textbf{E},\nabla_E]} \otimes \textbf{e}.$$

Example (cf. Landi–Reina–Zampini, Khalkhali–Landi–Van Suijlekom)

Let
$${
m vol}\coloneqq {
m I}\in \Omega^2_q({\bf CP}^{\!\scriptscriptstyle 1});$$
 given $t\in ({
m o},{
m I}),$ let $[n]_t\coloneqq \frac{{
m I}-t^{n-1}}{{
m I}-t}.$ Then

$$\mathbf{F}_{[\mathcal{L}_m, \nabla_m]} = [m]_{q^{-2}} q^2 \text{ vol}, \qquad \qquad \mathbf{K}_{[\mathcal{L}_m, \nabla_m]} = q^{2m}.$$

Pimsner's construction redux

Theorem (Ć.: cf. Đurđević. Moncada)

Let B be a unital pre-C*-algebra with *-exterior algebra (Ω_B, d_B) . Let $\kappa > 0$.

DIFFERENTIAL GEOMETRY

- 1. If $(P; \Omega_P, d_P; \Pi_P)$ is a κ -differentiable quantum principal U(1)-bundle with connection over $(B; \Omega_B, d_B)$, then P_1 admits a canonical Hermitian bimodule connection $(\sigma_{P_1}, \nabla_{P_1})$ with $\kappa_{[P_1, \nabla_{P_2}]} = \kappa$.
- 2. If $(E; \sigma_E, \nabla_E)$ is a Hermitian line B-bimodule with connection that satisfies $\kappa_{[E,\nabla_{F}]} = \kappa$, then there exists an essentially unique κ -differentiable quantum principal U(1)-bundle with connection $(P; \Omega_P, d_P; \Pi_P)$ over $(B; \Omega_B, d_B)$, such that $(P_1; \sigma_{P_1}, \nabla_{P_2}) \cong (E; \sigma_E, \nabla_E)$.

Example (cf. Đurđević)

 $(\mathcal{O}_q(\mathbf{CP^1}); \Omega_q(\mathbf{CP^1}), d_q)$ lifts via $(\mathcal{L}_1; \sigma_1, \nabla_1)$ to $\mathcal{O}_q(\mathbf{S^3})$ with Woronowicz's 3-dimensional calculus ($\Omega_q(\mathbf{S}^3)$, d_q) and Brzeziński–Majid's q-monopole connection Π_a .

1. Equip $\Omega_{q,h}(\mathbf{S}^3) \coloneqq \mathcal{O}_q(\mathbf{S}^2) \otimes_{\mathcal{O}_q(\mathbf{CP}^1)} \Omega_q(\mathbf{CP}^1)$ with

$$(p_1 \otimes \beta_1) \cdot (p_2 \otimes \beta_2) := p_1 \cdot \sigma_{|p_1|} (\beta_1 \otimes p_2) \cdot \beta_2,$$
$$(p \otimes \beta)^* := \sigma_{-|p|} (\beta^* \otimes p^*).$$

2. Define $d_{q,h}:\Omega_{q,h}^{\bullet}(\mathbf{S}^3)\to\Omega_{q,h}^{\bullet+1}(\mathbf{S}^3)$ by

$$d_{q,h}(p \otimes \beta) \coloneqq \nabla_{|p|}(p) \cdot \beta + p \otimes d_q \beta.$$

- 3. Construct $\Omega_q(\mathbf{S}^3)$ from $\Omega_{q,h}(\mathbf{S}^3)$ by adjoining $\vartheta \in \Omega_q^1(\mathbf{S}^3)_{sa}^{U(1)}$ satisfying $\vartheta^2 = 0$ and $\vartheta \cdot (\mathfrak{p} \otimes \mathfrak{g}) = \mathfrak{g}^{-2|\mathfrak{p}|}(\mathfrak{p} \otimes \mathfrak{g}) \cdot \vartheta$.
- 4. Define $d_q: \Omega_q^{\bullet}(\mathbf{S}^3) \to \Omega_q^{\bullet+1}(\mathbf{S}^3)$ by $d_q \vartheta := -\frac{q^4}{2\pi}$ vol and

$$d_q(p \otimes \beta) := \vartheta \cdot 2\pi i[|p|]_{q^2}(p \otimes \beta) + d_{q,h}(p \otimes \beta).$$

5. Define $\Pi_q:\Omega_q(\mathbf{S}^3)\to\Omega_{q,h}(\mathbf{S}^3)$ by $\Pi_q\!\!\upharpoonright_{\Omega_{q,h}(\mathbf{S}^3)}$: \equiv id and $\Pi_q(\vartheta)$: \equiv o.

Bounded commutator representations

Let B be a unital pre-C*-algebra; let (Ω_B, d_B) be a *-exterior algebra on B.

Definition (Baaj-Julg, Connes, Schmüdgen)

A bounded commutator representation of $(B; \Omega_B, d_B)$ is (H, π, D) , where

- 1. *H* is a separable $\mathbb{Z}/2\mathbb{Z}$ -graded pre-Hilbert space,
- 2. $\pi: B \to \mathbf{L}(H)_{\text{even}}$ is a bounded *-homomorphism,
- 3. $D: H \to H$ is an odd symmetric **C**-linear map,

such that there exists (necessarily unique) $\pi_D: \Omega^1_R \to \mathbf{L}(H)_{\text{odd}}$ satisfying

$$\pi_D(\mathsf{d}_B(b)) = \mathrm{i}[D, \pi(b)].$$

It is faithful whenever π is isometric and π_D is injective.

The spin Dirac commutator representation of $\mathcal{O}_a(\mathbf{CP}^1)$

Proposition (Dgbrowski–Sitarz, Majid; cf. Neshveyev–Tuset)

The following constructs a faithful bounded commutator representation $(\mathcal{S}_q(\mathbf{CP^1}), \pi_q, \mathcal{D}_q)$ of $(\mathcal{O}_q(\mathbf{CP^1}), \Omega_q(\mathbf{CP^1}), d_q)$.

- 1. Equip $\mathcal{L}_{\mp 1}$ with the inner product $\langle s_1, s_2 \rangle := h_a(s_1^* s_2)$, where h_a is Woronowicz's Haar state on $\mathcal{O}_q(\mathbf{S}^3)$.
- 2. Let $S_q(\mathbf{CP}^1) := \mathcal{L}_{-1} \oplus \mathcal{L}_1$ as a direct sum of pre-Hilbert spaces with the $\mathbb{Z}/2\mathbb{Z}$ -grading $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.
- 3. Let $\pi_q: \mathcal{O}_q(\mathbf{CP}^1) \to \mathbf{L}(\mathcal{S}_q(\mathbf{CP}^1))_{\mathrm{even}}$ be the direct sum of left $\mathcal{O}_a(\mathbf{CP}^1)$ -module structures on \mathcal{L}_{-1} and \mathcal{L}_1 .
- 4. Let $ot\!\!/_q \coloneqq \left(\begin{smallmatrix} 0 & q^{-1}\partial_+ \\ q\partial_- & 0 \end{smallmatrix} \right)$; hence $\pi_{\not\!\!/_q}(\omega_+, \omega_-) = \left(\begin{smallmatrix} 0 & q^{-2}\omega_+ \\ q^2\omega_- & 0 \end{smallmatrix} \right)$.

No-go for bounded commutator representations

Proposition (Ć.)

Let $\kappa > 0$, let $(P; \Omega_P, d_P; \Pi)$ be a κ -differentiable quantum principal U(1)-bundle with connection, and let (H, π, D) be a bounded commutator representation of $(P; \Omega_P, d_P)$. If $\kappa \neq 1$, then $(id - \Pi)(\Omega_P^1) \subseteq \ker \pi_D$.

Remark

This is an easy application of the existence of $(e_i)_{i=1}^m$ and $(f_k)_{j=1}^n$ in P_1 that satisfy $\sum_{i=1}^m e_i e_i^* = 1 = \sum_{j=1}^n f_j^* f_j^*$.

Corollary (Schmüdgen)

If (H, π, D) is a bounded commutator representation of $(\mathcal{O}_q(\mathbf{S}^3); \Omega_q(\mathbf{S}^3), \mathbf{d}_q)$, then $\pi_D = \mathbf{0}$.

Modular symmetries

Let $(P; \Omega_P, d_P; \Pi)$ be a κ -differentiable quantum principal U(1)-bundle over $(B; \Omega_B, d_B)$.

Let (H, U, π, D) be a locally bounded (U(1)-equivariant) commutator representation of $(P; \Omega_P, d_P; \Pi)$.

A modular symmetry of (H, U, π, D) is even positive U(1)-invariant invertible locally bounded N on H, such that

$$N_{H^{U(1)}} = id$$
, $[N, \pi(B)] = \{o\}$, $N\pi(P)N^{-1} = \pi(P)$.

Example

Given
$$t \in (o, \infty)$$
, let $\Lambda_t := \bigoplus_{j \in \mathbf{Z}} t^{-j} \operatorname{id}_{H_j}$, where

$$H_i := \{ \xi \in H \mid \forall w \in U(1), \ U_w \xi = w^m \xi \}.$$

No-go for twisted commutator representations

Theorem (Ć.)

Suppose that $\mathsf{Z}(B) = \mathbf{C}$ and that there exist $\eta \in \Omega^1_{P,h} \setminus \{ \mathsf{o} \}$ and $t \in (\mathsf{o}, \infty) \setminus \{ \kappa \}$ satisfying $\eta \cdot p = t^{-|p|} p \cdot \eta$. Suppose that π is injective and that $\pi(P) \cdot H^{\mathsf{U}(1)}$ is dense in H. If there exists a modular symmetry N of (H, U, π, D) that satisfies

$$N \cdot \pi_D(\Omega_P^1) \cdot N \subseteq \mathbf{L}(H),$$

then
$$(id - \Pi)(\Omega_p^1) \subseteq \ker \pi_D \text{ or } \pi_D(\eta) = 0.$$

Corollary

Let (H, U, π, D) be a faithful locally bounded commutator representation of $(\mathcal{O}_q(\mathbf{S}^3), \Omega_q(\mathbf{S}^3), d_q)$, such that $\pi(P) \cdot H^{U(1)}$ is dense in H. There exists no modular symmetry N of (H, U, π, D) that satisfies

$$N \cdot \pi_D(\Omega^1_q(\mathbf{S}^3)) \cdot N \subseteq \mathbf{L}(H).$$

TL;DR

- We can formulate and solve the lifting problem for Riemannian structure in terms of Hodge star operators and compatible traces (cf. Kustermans–Murphy–Tuset, Majid, Zampini, Ó Buachalla, Moncada).
 - This involves a precise generalisation of conformality to Hermitian line bimodules with connection.
 - This recovers Zampini's Hodge star operator on $(\Omega_q(\mathbf{S}^3), d_q)$.
- We can formulate and solve the compatible lifting problem for Riemannian structure in terms of faithful commutator representations.
 - In general, we need separate modular symmetries to 'damp' vertical and horizontal 1-forms.
 - o 'Dampability' of horizontal 1-forms is governed by a precise generalisation of *metric equicontinuity* à Belissard–Marcolli–Reihani to Hermitian line bimodules with connection.
 - We obtain a large class of candidate compact quantum metric spaces that recovers Kaad–Kyed's construction for $\mathcal{O}_{a}(\mathbf{S}^{3})$.