Quantum principal $\mathrm{U}(\mathrm{I})$-bundles Analysis \& synthesis

University of Bologna
May 6, 2024

Branimir Ćaćić

University of New Brunswick, Fredericton

Approaches to quantum principal bundles

1. T. Brzeziński \& S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993), no. 3, 591-638:

$$
\Omega_{P, \text { hor }}^{1}:=\operatorname{ker}\left(\operatorname{ver}_{\mathrm{BM}}: \Omega_{P}^{1} \rightarrow \Lambda_{H}^{1} \otimes P\right)=P \cdot \mathrm{~d}\left(P^{\mathrm{coH}}\right) \cdot P
$$

2. M. Đurđević, Geometry of quantum principal bundles II, Rev. Math. Phys. 9 (1997), no. 5, 531-607:

$$
\Omega_{P, \text { hor }}:=\left\{\omega \in \Omega_{P} \mid \Delta_{\Omega_{P}}(\omega) \in \Omega_{P} \otimes H\right\} \supseteq P \cdot \Omega_{P}^{\operatorname{co} \Omega_{H}} \cdot P .
$$

Progress towards theoretical synthesis

1. B. Ć., Classical gauge theory on quantum principal bundles, arXiv:2108.13789.
2. B. Ć., Geometric foundations for classical U(1)-gauge theory on noncommutative manifolds, arXiv:2301.01749.
3. A. Del Donno, E. Latini, T. Weber, On the Đurđtević approach to quantum principal bundles, arXiv:2404.07944.

Basic definitions

Let $\alpha: \mathrm{U}(1) \rightarrow \mathrm{GL}(V)$ be a linear representation of $\mathrm{U}(1)$.
For each $m \in \mathbf{Z}$, define the $m^{\text {th }}$ isotypical component

$$
V_{m}:=\left\{v \in V \mid \forall z \in U(1), \alpha_{z}(v)=z^{m} v\right\} .
$$

Assumption

We only consider the case where $V=\bigoplus_{m \in \mathbf{Z}} V_{m}$.

Given $\kappa>0$, define $U(1)$-equivariant $\Lambda_{\kappa}, \partial_{\kappa}: V \rightarrow V$ by

$$
\Lambda_{\kappa}:=\bigoplus_{m \in \mathbf{Z}} \kappa^{m} \mathrm{id}_{V_{m}}, \quad \partial_{\kappa}:=\bigoplus_{m \in \mathbf{Z}} 2 \pi \mathrm{i}[m]_{\kappa} \mathrm{id}_{V_{m}},
$$

where $[m]_{\kappa}:=\frac{1-\kappa^{m}}{1-\kappa}$ if $\kappa \neq 1$ and $[m]_{\kappa}=m$ if $\kappa=1$.

Basic definitions

A graded $*$-algebra is an \mathbf{N}_{0}-graded unital \mathbf{C}-algebra Ω equipped with \mathbf{C}-antilinear $*: \Omega^{\bullet} \rightarrow \Omega^{\bullet}$, such that

$$
1^{*}=1, \quad\left(\alpha^{*}\right)^{*}=\alpha, \quad(\alpha \beta)^{*}=(-1)^{\operatorname{deg}(\alpha) \operatorname{deg}(\beta)} \beta^{*} \alpha^{*} .
$$

A *-quasi-differential graded algebra ($*$-quasi-DGA) is a graded *-algebra Ω equipped with \mathbf{C}-linear $\nabla: \Omega^{\bullet} \rightarrow \Omega^{\bullet+1}$, such that:

$$
\nabla\left(\alpha^{*}\right)=\nabla(\alpha)^{*}, \quad \nabla(\alpha \beta)=\nabla(\alpha) \beta+(-1)^{\operatorname{deg}(\alpha)} \alpha \nabla(\beta) .
$$

A $*$-differential graded algebra ($*$-DGA) is a $*$-quasi-DGA (Ω, d), such that $\mathrm{d}^{2}=0$.

A $*$-exterior algebra is a $*-\operatorname{DGA}(\Omega, d)$, such that Ω is generated as a ring by Ω° and $\mathrm{d}\left(\Omega^{\circ}\right)$.

Invariant $*$-exterior algebras on $\mathcal{O}(\mathrm{U}(1))$

Consider $\mathcal{O}(\mathrm{U}(1))=\mathbf{C}\left[z, z^{-1}\right]$ with

$$
\left(z^{m}\right)^{*}=z^{-m}, \quad \alpha_{w}\left(z^{m}\right):=w^{m} z^{m} .
$$

Given $K>0$, construct $\left(\Omega_{\kappa}(U(1)), d\right)$ from
$\Omega_{\kappa}^{\circ}(\mathrm{U}(1)):=\mathcal{O}(\mathrm{U}(1))$ by appending $e_{\kappa} \in \Omega_{\mathrm{K}}^{1}(\mathrm{U}(1))$ with

$$
\begin{gathered}
z^{m} \cdot e_{\mathrm{K}}=e_{\mathrm{\kappa}} \cdot \mathrm{\kappa}^{m} z^{m}, \quad e_{\mathrm{K}}^{2}=0, \quad e_{\mathrm{K}}^{*}=e_{\kappa}, \quad \alpha_{w}\left(e_{\mathrm{K}}\right):=e_{\mathrm{\kappa}} ; \\
\mathrm{d}\left(z^{m}\right):=e_{\mathrm{K}} \cdot 2 \pi \mathrm{i}[m]_{\mathrm{K}} z^{m}, \quad \mathrm{~d}\left(e_{\mathrm{k}}\right):=0 .
\end{gathered}
$$

Then $\left(\Omega_{k}(\mathrm{U}(\mathrm{I})), \mathrm{d}\right)$ is a $\mathrm{U}(\mathrm{I})$-invariant $*$-exterior algebra.
Remark
In fact, $\left(\Omega_{\kappa}(\mathrm{U}(1))\right.$, d) defines a complete $*$-calculus on $\mathcal{O}(\mathrm{U}(1))$.

Chevalley-Eilenberg extensions

Let (Ω, ∇) be a $U(1)-*$-quasi-DGA; let $K>0$.
The k-deformed Chevalley-Eilenberg extension of (Ω, ∇) is the $\mathrm{U}(1)$-quasi-DGA $\left(\mathrm{CE}_{\kappa}(\Omega), \mathrm{CE}_{\kappa}(\nabla)\right)$, where:

1. $\mathrm{CE}_{\kappa}(\Omega)$ is obtained from Ω by adjoining $e_{\kappa} \in \mathrm{CE}_{\kappa}(\Omega)^{1}$ with

$$
\omega \cdot e_{\kappa}=(-1)^{\operatorname{deg}(\omega)} e_{\kappa} \cdot \Lambda_{\kappa}(\omega), \quad e_{\kappa}^{2}=0, \quad e_{\kappa}^{*}=e_{\kappa} ;
$$

2. $C E_{k}(\nabla)$ is defined by

$$
\mathrm{CE}_{\kappa}(\nabla)(\omega):=e_{\kappa} \cdot \partial_{\kappa}(\omega)+\nabla(\omega), \quad \mathrm{CE}_{\kappa}(\nabla)\left(e_{\kappa}\right):=0 ;
$$

3. the $U(1)$-action is extended by defining e_{K} to be $\mathrm{U}(1)$-invariant.

Differentiable U(1)-actions

Let (Ω, d) be a $U(1)-*$-exterior algebra; let $\kappa>0$.
Then (Ω, d) is k-vertical if id $\Omega^{\circ}: \Omega^{\circ} \rightarrow \operatorname{CE}_{k}(\Omega)^{\circ}$ extends to

$$
\operatorname{ver}:(\Omega, d) \rightarrow\left(\mathrm{CE}_{\kappa}(\Omega), \mathrm{CE}_{\kappa}(\mathrm{d})\right),
$$

the vertical coevaluation on (Ω, d).

Remarks

1. In the commutative case, ver is contraction with $\left(\frac{\partial}{\partial t}\right)^{\#}$.
2. Being K-vertical is completeness WRT $\left(\Omega_{\kappa}(U(1)), d\right)$.
3. The corresponding vertical map à la Brzeziński-Majid is

$$
\operatorname{ver}_{\mathrm{BM}}=\left.(\text { ver }-\mathrm{id})\right|_{\Omega^{1}}: \Omega^{1} \rightarrow e_{\mathrm{K}} \cdot \Omega^{\circ} \cong \mathbf{C} e_{\mathrm{k}} \otimes \Omega^{\circ}
$$

Vertical, horizontal, and basic forms

Let (Ω, d) be a K-vertical U(1)-*-exterior algebra.

1. The $\mathrm{U}(1)$-equivariant $*-\mathrm{DGA}$ of vertical forms is

$$
\left(\Omega_{\text {ver }}, \mathrm{d}_{\text {ver }}\right):=\left(\mathrm{CE}_{\kappa}\left(\Omega^{\circ}\right), \mathrm{CE}_{\kappa}(0)\right) .
$$

2. The $U(1)$-invariant graded $*$-sub-algebra of horizontal forms is

$$
\Omega_{\text {hor }}:=\operatorname{ker}(\operatorname{ver}-\mathrm{id})=\{\omega \in \Omega \mid \operatorname{ver} \omega=\omega\} .
$$

3. The trivially $\mathrm{U}(\mathrm{I})$-equivariant $*$-DGA of basic forms is

$$
\left(\Omega_{\mathrm{bas}}, \mathrm{~d}_{\mathrm{bas}}\right):=\left(\Omega_{\mathrm{hor}}^{\mathrm{U}(1)},\left.\mathrm{d}\right|_{\Omega_{\mathrm{hor}}^{\mathrm{U}(1)}}\right) .
$$

Differentiable quantum principal $\mathrm{U}(1)$-bundles

Definition (Brzeziński-Majid, Hajac, Đurtević, Beggs-Brzeziński, Beggs-Majid, ć.)
Given $K>0$, a K-differentiable quantum principal $U(1)$-bundle is a K-vertical $U(1)-*$-exterior algebra (Ω, d), such that:

1. there exist finite families $\left(e_{i}\right)_{i=1}^{m}$ and $\left(\epsilon_{j}\right)_{j=1}^{n}$ in $\left(\Omega^{\circ}\right)_{1}$, such that $\sum_{i=1}^{m} e_{i} e_{i}^{*}=1=\sum_{j=1}^{n} \epsilon_{j}^{*} \epsilon_{k}$;
2. $\Omega_{\text {bas }}$ is generated by $\Omega_{\text {bas }}^{\circ}$ and $\mathrm{d}\left(\Omega_{\text {bas }}^{\circ}\right)$;
3. $\Omega_{\text {hor }}=\Omega^{\circ} \cdot \Omega_{\text {bas }} \cdot \Omega^{\circ}$.

Condition 1 implies that Ω° is a principal $\mathcal{O}(U(1))$-comodule algebra and $\left(\Omega_{\text {ver }}, \mathrm{d}_{\text {ver }}\right)$ is a $*$-exterior algebra.

Condition 2 implies that $\left(\Omega_{\text {bas }}, d_{\text {bas }}\right)$ is a *-exterior algebra.

Structure of horizontal forms

Let (Ω, d) be a k-differentiable quantum principal $U(1)$-bundle.
Proposition (Beggs-Majid, Cor. 5.53)
Infact, $\Omega_{\text {hor }}=\Omega^{\circ} \cdot \Omega_{\text {bas }}$.

Definition (Đurđević, Beggs-Majid, Ć.)

The Fröhlich automorphism of (Ω, d) is the unique
$\mathrm{U}(1)$-equivariant automorphism Φ of $\left(Z \Omega_{\text {bas }}, d_{\text {bas }}\right)$, such that

$$
\forall m \in \mathbf{Z}, \forall p \in\left(\Omega^{\circ}\right)_{m}, \forall \beta \in Z \Omega_{\text {bas }}, \quad p \cdot \beta=\Phi(\beta) \cdot p .
$$

Question

What is the relationship between the Fröhlich automorphism and the Đurđević braiding à la Del Donno-Latini-Weber?

Examples

1. Let $\theta \in \mathbf{R}$, and let $\left(\Omega_{\theta}\left(\mathbf{S}^{3}\right)\right.$, $\left.d\right)$ be the θ-deformed de Rham calculus on $C_{\theta}^{\infty}\left(\mathbf{S}^{3}\right)$. Then $\left(\Omega_{\theta}\left(\mathbf{S}^{3}\right)^{\text {alg }}, \mathrm{d}\right)$ is a 1-differentiable quantum principal $U(1)$-bundle with

$$
\left(\Omega_{\theta}\left(\mathbf{S}^{3}\right)_{\text {bas }}^{\text {alg }}, \mathrm{d}_{\text {bas }}\right)=\left(\Omega\left(\mathbf{C P}^{1}\right), \mathrm{d}\right)
$$

and Φ given by rotation of $\mathbf{C} P^{1} \cong \mathbf{S}^{2}$ by $2 \pi \theta$.
2. Let $q \in(0,1)$, let $\left(\Omega_{q}\left(\mathbf{S}^{3}\right), d\right)$ be the 3-dimensional calculus on $\mathcal{O}_{q}(\operatorname{SU}(2))$, and let $\left(\Omega_{q}\left(\mathbf{C P}{ }^{1}\right)\right.$, d) be the 2-dimensional calculus on $\mathcal{O}_{q}\left(\mathbf{C P}^{1}\right)$. Then $\left(\Omega_{q}\left(\mathbf{S}^{3}\right)\right.$, d$)$ is a q^{2}-differentiable quantum principal $U(1)$ bundle with

$$
\left(\Omega_{q}\left(\mathbf{S}^{3}\right)_{\mathrm{bas}}, \mathrm{~d}_{\mathrm{bas}}\right) \cong\left(\Omega_{q}\left(\mathbf{C} \mathrm{P}^{1}\right), \mathrm{d}\right)
$$

and Φ uniquely determined by $\Phi\left(\mathrm{i} e^{+} e^{-}\right)=q^{2} \mathrm{i}^{+} e^{-}$.

Principal connections

Definition (Brzeziński-Majid, Hajac, Đurdević, Beggs-Majid, Ć)
Let $(\Omega$, d) be a k-differentiable quantum principal $\mathrm{U}(1)$-bundle.

1. A connection on (Ω, d) is a $U(1)$-equivariant surjective *-homomorphism $\Pi: \Omega^{\bullet} \rightarrow \Omega_{\text {hor }}^{\bullet}$, such that $\Pi^{2}=\Pi$ and

$$
\forall \omega \in \Omega^{1}, \quad(\mathrm{id}-\Pi)(\omega)^{2}=0 .
$$

2. A connection 1 -form on (Ω, d) is $U(1)$-invariant self-adjoint $\vartheta \in \Omega^{1}$, such that

$$
\alpha \cdot \vartheta=(-1)^{\operatorname{deg}(\alpha)} \vartheta \cdot \Lambda_{\kappa}(\alpha), \quad \operatorname{ver}(\vartheta)=e_{\kappa}+\vartheta .
$$

The set of connection 1 -forms, if non-empty, is an affine space with space of translations $\left\{\omega \in Z \Omega_{\text {bas }}^{2} \mid \omega^{*}=\omega\right\}$.

Principal connections

Proposition (Brzeziński-Majid, Đurđević, Ć.)
Let (Ω, d) be a k-differentiable quantum principal $\mathrm{U}(1)$-bundle. For every connection Π, there exists a unique connection 1 -form ϑ, such that

$$
\forall p \in \Omega^{\circ}, \quad(\mathrm{id}-\Pi) \circ \mathrm{d}(p)=\vartheta \cdot \partial_{\kappa}(p),
$$

and vice versa. In that case, $\Omega^{\bullet}=\Omega_{\text {hor }}^{\bullet} \oplus \vartheta_{\Pi} \cdot \Omega_{\text {hor }}^{\bullet-1}$.
A connection Π restricts on Ω^{1} to a $*$-preserving strong bimodule connection à la Brzeziński-Majid, Hajac, and Beggs-Majid.

A connection 1-form ϑ corresponds to a multiplicative regular connection à la Đurđević.

Curvature

Proposition (Đurđević, Ć.)

Let (Ω, d) be a k-differentiable quantum principal $\mathrm{U}(\mathrm{I})$-bundle; let Φ be its Fröhlich automorphism. Let Π be a connection on (Ω, d); let ϑ_{Π} be its connection 1-form.

1. Let $\mathcal{F}_{\Pi}:=-\mathrm{d}\left(\vartheta_{\Pi}\right)$. Then \mathcal{F}_{Π} is closed, self-adjoint, basic, and central in Ω_{bas}, and $\Phi\left(\mathcal{F}_{\Pi}\right)=\kappa \mathcal{F}_{\Pi}$.
2. Let $\mathrm{d}_{\text {hor }}:=\Pi \circ \mathrm{d}$. Then $\left(\Omega_{\text {hor }}, \mathrm{d}_{\text {hor }}\right)$ is a $\mathrm{U}(\mathrm{I})$-equivariant *-quasi-DGA, and $\mathrm{d}_{\text {hor }}^{2}(\omega)=\mathcal{F}_{\Pi} \cdot \partial_{\kappa}(\omega)$ for $\omega \in \Omega_{\text {hor }}$.

We call \mathcal{F}_{Π} the curvature of the connection Π on (Ω, d).

Example

The curvature of the q-monopole on $\left(\Omega_{q}\left(\mathbf{S}^{3}\right)_{\text {bas }}, \mathrm{d}_{\text {bas }}\right)$ is $\frac{1}{2 \pi} \mathrm{i} e^{+} e^{-}$.

Gysin sequence in de Rham cohomology

Theorem (Bouwknegt-Hanabuss-Mathai, Ć.)

Let (Ω, d) be a к-differentiable quantum principal bundle with connection Π. There is a long exact sequence
$\cdots \rightarrow H^{k}\left(\Omega_{\text {bas }}\right) \xrightarrow{\cdot\left[\mathcal{F}_{\Pi}\right]} H^{k+2}\left(\Omega_{\text {bas }}\right) \rightarrow H^{k+2}(\Omega) \xrightarrow{\int} H^{k+1}\left(\Omega_{\text {bas }}\right) \rightarrow \cdots$
where $\int\left[\omega_{1}+\vartheta_{\Pi} \cdot \omega_{2}\right]:=\left[\int_{\mathrm{U}(1)} \alpha_{z}\left(\omega_{2}\right) \mathrm{d}(z)\right]$.
Example
Use nC Hodge theory à la Prague on $\left(\Omega_{q}\left(\mathbf{C P}^{1}\right)\right.$, d) and Gysin with respect to the q-monopole to get an easy proof that $H^{\circ}\left(\Omega_{q}\left(\mathbf{S}^{3}\right)\right)=\mathbf{C}, \quad H^{3}\left(\Omega_{q}\left(\mathbf{S}^{3}\right)\right)=\mathbf{C}\left[e^{0} e^{+} e^{-}\right], \quad H^{k}\left(\Omega_{q}\left(\mathbf{S}^{3}\right)\right)=0$ else.

Horizontai calcuii

Let P be a quantum topological principal $\mathrm{U}(1)$-bundle with base B, i.e., P is a $\mathrm{U}(1)$ - $*$-algebra admitting finite families $\left(e_{i}\right)_{i=1}^{m}$ and $\left(\epsilon_{j}\right)_{j=1}^{n}$ in $\left(\Omega^{\circ}\right)_{1}$, such that $\sum_{i=1}^{m} e_{i} e_{i}^{*}=1=\sum_{j=1}^{n} \epsilon_{j}^{*} \epsilon_{k}$.
Let $\left(\Omega_{B}, \mathrm{~d}_{B}\right)$ be a $*$-exterior algebra on $B:=P^{\mathrm{U}}{ }^{(1)}$ with $\Omega_{B}^{\circ}=B$.

Definition (Đurđević, Ć.)

A horizontal calculus for P with respect to $\left(\Omega_{B}, \mathrm{~d}_{B}\right)$ is a $\mathrm{U}(1)$-equivariant $*$-quasi-DGA $\left(\Omega_{P, \text { hor }}, d_{P, \text { hor }}\right)$, such that

$$
\begin{aligned}
\Omega_{P, \text { hor }}^{\circ}=P, & \left(\left.\Omega_{P, \text { hor }}^{U(1)} \mathrm{d}_{P, \text { hor }}\right|_{\Omega_{\text {phor }}^{U(1)}}\right)=\left(\Omega_{B}, \mathrm{~d}_{B}\right), \\
& \Omega_{P, \text { hor }}=P \cdot \Omega_{B} \cdot P .
\end{aligned}
$$

Associated line bundles

Theorem (Ć.)

1. Hermitian line B-bimodules with Hermitian bimodule connections WRT $\left(\Omega_{B}, \mathrm{~d}_{B}\right)$ form a coherent 2-group $\operatorname{DPIC}(B)$ on the nose.
2. The mapping $m \mapsto\left(P_{m},\left.\mathrm{~d}_{P, \text { hor }}\right|_{P_{m}}\right)$ defines a homomorphism of coherent 2-groups $\mathbf{Z} \rightarrow$ DPIC (B).
3. For every object (\mathcal{L}, ∇) of $\operatorname{DPIC}(B)$, there exists an essentially unique quantum topological principal $\mathrm{U}(\mathrm{I})$-bundle P with base B and horizontal calculus $\left(\Omega_{P}, \mathrm{~d}_{P, \text { hor }}\right)$ for P WRT $\left(\Omega_{B}, \mathrm{~d}_{B}\right)$, such that

$$
(\mathcal{L}, \nabla) \cong\left(P_{1},\left.\mathrm{~d}_{P, \text { hor }}\right|_{P_{1}}\right) .
$$

In other words,

$$
\left(\Omega_{P, \text { hor }}, \mathrm{d}_{P, \text { hor }}\right) \cong\left(\Omega_{B}, \mathrm{~d}_{B}\right) \rtimes_{(\mathcal{L}, \nabla)} \mathbf{Z}, \quad(\mathcal{L}, \nabla) \cong\left(P_{1},\left.\mathrm{~d}_{P, \text { hor }}\right|_{P_{1}}\right)
$$

Curvature data

For convenience, let $\mathcal{S}(B):=\left\{\omega \in Z \Omega_{B}^{2} \mid \omega^{*}=\omega, d_{B}(\omega)=0\right\}$.
Definition (Đurđ̈ević, Ć.; cf. Beggs-Majid)
Let $\left(\Omega_{P, \text { hor }}, \mathrm{d}_{P, \text { hor }}\right)$ be a horizontal calculus for P WRT $\left(\Omega_{B}, \mathrm{~d}_{B}\right)$.

1. Its Fröhlich automorphism is the unique $\mathrm{U}(1)$-equivariant automorphism Φ_{P} of $\left(Z \Omega_{B}, d_{B}\right)$, such that

$$
\forall m \in \mathbf{Z}, \forall p \in P_{m}, \forall \beta \in Z \Omega_{B}, \quad p \cdot \beta=\Phi_{P}(\beta) \cdot p .
$$

2. Its curvature 1-cocycle is the unique 1-cocycle $\mathcal{F}_{P}: \mathbf{Z} \rightarrow \mathcal{S}(B)$ for the left Z-action generated by $\left.\Phi_{P}\right|_{\mathcal{S}_{(B)}}$, such that

$$
\forall m \in \mathbf{Z}, \forall \omega \in\left(\Omega_{P, \text { hor }}\right)_{m}, \quad \mathrm{~d}_{P, \text { hor }}^{2}(\omega)=2 \pi \mathrm{i} \mathcal{F}_{P}(m) \cdot \omega .
$$

Hence, its curvature data is $\left(\Phi_{P}, \mathcal{F}_{P}\right)$.

Curvature data

Example

Let (Ω, d) be a k -differentiable quantum principal $\mathrm{U}(1)$-bundle with connection Π.
Let $\mathrm{d}_{\text {hor }}:=\left.\Pi \circ \mathrm{d}\right|_{\Omega_{\text {hor }}}$, so that $\left(\Omega_{\text {hor }}, \mathrm{d}_{\text {hor }}\right)$ defines a horizontal calculus for Ω° with respect to ($\Omega_{\text {bas }}, \mathrm{d}_{\text {bas }}$).

1. The Fröhlich automorphism $\Phi_{\Omega^{\circ}}$ of $\left(\Omega_{\text {hor }}, d_{\text {hor }}\right)$ is the Fröhlich automorphism Φ of (Ω, d).
2. The curvature 1-cocycle $\mathcal{F}_{\Omega^{\circ}}$ of $\left(\Omega_{\text {hor }}, \mathrm{d}_{\text {hor }}\right)$ is given by

$$
\mathcal{F}_{\Omega^{\circ}}(m)=[m]_{\kappa} \mathcal{F}_{\Pi} .
$$

In particular, $\Phi_{\Omega^{\circ}}\left(\mathcal{F}_{\Omega^{\circ}}(1)\right)=\kappa \mathcal{F}_{\Omega^{\circ}}(1)$.

Vertical deformation parameter

Let $\left(\Omega_{P, \text { hor }}, d_{P, \text { hor }}\right)$ be a horizontal calculus for P WRT $\left(\Omega_{B}, d_{B}\right)$.

1. We have $\mathrm{d}_{\text {P, hor }}^{2}=0 \operatorname{IFF} \mathcal{F}_{P}=0, \operatorname{IFF} \mathcal{F}_{p}(1)=0$; in this case, $\left(\Omega_{P, \text { hor }}, d_{P, \text { hor }}\right)$ is flat.
2. Suppose that $\left(\Omega_{p, \text { hor }}, \mathrm{d}_{p, \text { hor }}\right)$ is not flat. Given $k>0$, we have $\mathrm{d}_{\mathrm{P}, \text { hor }}^{2}=\mathcal{F}_{p}(1) \cdot \partial_{\kappa}(\cdot)$ IfF $\mathcal{F}_{p}=\left(m \mapsto[m]_{k} \mathcal{F}_{p}(1)\right)$, IFF

$$
\Phi_{P}\left(\mathcal{F}_{P}(1)\right)=\kappa \mathcal{F}_{P}(1) .
$$

In this case, k is the vertical deformation parameter of the horizontal calculus ($\Omega_{p, h o r}, \mathrm{~d}_{\mathrm{p}, \mathrm{hor}}$).

Vertical deformation parameter

Example
Let $\theta \in \mathbf{R} \backslash \mathbf{Q}$ be quadratic with square-free discriminant.
Let $\epsilon_{\theta}=c \theta+d \in \mathbf{Z}+\mathbf{Z} \theta$ be the norm-positive fundamental unit of the real quadratic number field $\mathbf{Q}[\theta]$.
Let \mathcal{L} be the basic Heisenberg module on $C_{\theta}^{\infty}\left(\mathbf{T}^{2}\right)$ of rank ϵ_{θ} and degree c; let ∇ be its canonical constant curvature connection. Then $\left(\Omega_{\theta}\left(\mathbf{T}^{2}\right), \mathrm{d}\right) \rtimes_{(\mathcal{L}, \nabla)} \mathbf{Z}$ has curvature data ($\left.\Phi, \mathcal{F}\right)$ defined by

$$
\Phi=\bigoplus_{m=0}^{2} \epsilon_{\theta}^{m} \mathrm{id}_{\wedge \mathrm{R}^{2}}, \quad \mathcal{F}(m)=[m]_{\epsilon_{\theta}} c e^{1} e^{2},
$$

hence, vertical deformation parameter $\epsilon_{\theta}^{2}>1$.

Synthesis of total calculi

Theorem (Đurđević, Ć.)

Let $\left(\Omega_{P, \text { hor }}, \mathrm{d}_{P, \text { hor }}\right)$ be a horizontal calculus for P WRT $\left(\Omega_{B}, d_{B}\right)$. Let $\kappa>0$ be given, and suppose that $\left(\Omega_{P, \text { hor }}, d_{p, \text { hor }}\right)$ is flat or has deformation parameter κ. There exists essentially unique K-differentiable quantum principal $\mathrm{U}(1)$-bundle with connection $\left(\Omega_{P}, \mathrm{~d}_{P} ; \Pi_{P}\right)$, such that

$$
\Omega_{P}^{\circ}=P, \quad\left(\left(\Omega_{P}\right)_{\text {hor }},\left(\mathrm{d}_{P}\right)_{\mathrm{hor}}\right) \cong\left(\Omega_{P, \text { hor }}, \mathrm{d}_{P, \text { hor }}\right)
$$

Without loss ofgenerality, $\Omega_{P}=\operatorname{CE}_{\kappa}\left(\Omega_{P, \text { hor }}\right), \Pi_{p}$ is projection on
$\Omega_{P, \text { hor }}$ along $e_{k} \cdot \Omega_{P, \text { hor }}$, and

$$
\mathrm{d}_{P}(\omega)=e_{\kappa} \cdot \partial_{\kappa}(\omega)+\mathrm{d}_{P, \text { hor }}(\omega), \quad \mathrm{d}_{P}\left(e_{k}\right)=-\mathcal{F}_{P}(1) .
$$

