Foundations 000000000 Analysis 0000 Synthesis 0000000

Quantum principal U(1)-bundles Analysis & synthesis

University of Bologna May 6, 2024

Branimir Ćaćić

University of New Brunswick, Fredericton

Approaches to quantum principal bundles

1. T. Brzeziński & S. Majid, *Quantum group gauge theory on quantum spaces*, Commun. Math. Phys. **157** (1993), no. 3, 591–638:

$$\Omega^{\scriptscriptstyle 1}_{P, {\rm hor}} \coloneqq {\sf ker}({\sf ver}_{{\rm BM}}: \Omega^{\scriptscriptstyle 1}_P \to \Lambda^{\scriptscriptstyle 1}_H \otimes P) = P \cdot {\sf d}(P^{{\rm co} H}) \cdot P.$$

2. M. Đurđević, *Geometry of quantum principal bundles II*, Rev. Math. Phys. **9** (1997), no. 5, 531–607:

 $\Omega_{P,\mathrm{hor}} \coloneqq \{\omega \in \Omega_P \,|\, \Delta_{\Omega_P}(\omega) \in \Omega_P \otimes H\} \supseteq P \cdot \Omega_P^{\mathrm{co}\Omega_H} \cdot P.$

Progress towards theoretical synthesis

- 1. B. Ć., Classical gauge theory on quantum principal bundles, arXiv:2108.13789.
- 2. B. Ć., Geometric foundations for classical U(1)-gauge theory on noncommutative manifolds, arXiv:2301.01749.
- 3. A. Del Donno, E. Latini, T. Weber, On the Đurđević approach to quantum principal bundles, arXiv:2404.07944.

Basic definitions

Let $\alpha : U(1) \to GL(V)$ be a linear representation of U(1).

For each $m \in \mathbf{Z}$, define the m^{th} isotypical component

$$V_m \coloneqq \{ v \in V \mid \forall z \in U(1), \ \alpha_z(v) = z^m v \}.$$

Assumption

We only consider the case where $V = \bigoplus_{m \in \mathbb{Z}} V_m$.

Given $\kappa>0,$ define $U(1)\text{-equivariant}\,\Lambda_{\kappa}, \vartheta_{\kappa}:V\to V$ by

$$\Lambda_{\kappa} \coloneqq \bigoplus_{m \in \mathbf{Z}} \kappa^{m} \operatorname{id}_{V_{m}}, \qquad \mathfrak{d}_{\kappa} \coloneqq \bigoplus_{m \in \mathbf{Z}} 2\pi \operatorname{i}[m]_{\kappa} \operatorname{id}_{V_{m}},$$

where $[m]_{\kappa} \coloneqq \frac{1-\kappa^m}{1-\kappa}$ if $\kappa \neq 1$ and $[m]_{\kappa} = m$ if $\kappa = 1$.

Basic definitions

A graded *-algebra is an \mathbf{N}_{\circ} -graded unital \mathbf{C} -algebra Ω equipped with \mathbf{C} -antilinear * : $\Omega^{\bullet} \to \Omega^{\bullet}$, such that

$$\mathbf{1}^* = \mathbf{1}, \quad (\alpha^*)^* = \alpha, \quad (\alpha\beta)^* = (-\mathbf{1})^{\text{deg}(\alpha) \, \text{deg}(\beta)} \beta^* \alpha^*.$$

A *-quasi-differential graded algebra (*-quasi-DGA) is a graded *-algebra Ω equipped with **C**-linear $\nabla : \Omega^{\bullet} \to \Omega^{\bullet+1}$, such that:

$$abla(\alpha^*) =
abla(\alpha)^*$$
, $abla(\alpha\beta) =
abla(\alpha)\beta + (-1)^{\deg(\alpha)}\alpha
abla(\beta)$.

A *-differential graded algebra (*-DGA) is a *-quasi-DGA (Ω , d), such that d² = 0.

A *-exterior algebra is a *-DGA (Ω, d) , such that Ω is generated as a ring by Ω° and $d(\Omega^{\circ})$.

Invariant *-exterior algebras on O(U(1))

Consider $\mathbb{O}(\mathrm{U}(1))=\boldsymbol{\mathsf{C}}[z,z^{-1}]$ with

$$(z^m)^* = z^{-m}$$
, $lpha_w(z^m) \coloneqq w^m z^m$.

Given $\kappa > 0$, construct $(\Omega_{\kappa}(U(1)), d)$ from $\Omega^{\circ}_{\kappa}(U(1)) \coloneqq O(U(1))$ by appending $e_{\kappa} \in \Omega^{1}_{\kappa}(U(1))$ with

$$\begin{aligned} z^{m} \cdot e_{\kappa} &= e_{\kappa} \cdot \kappa^{m} z^{m}, \quad e_{\kappa}^{2} = 0, \quad e_{\kappa}^{*} = e_{\kappa}, \quad \alpha_{w}(e_{\kappa}) \coloneqq e_{\kappa}; \\ d(z^{m}) &\coloneqq e_{\kappa} \cdot 2\pi \mathrm{i}[m]_{\kappa} z^{m}, \quad d(e_{k}) \coloneqq 0. \end{aligned}$$

Then $(\Omega_\kappa(U(1)),d)$ is a U(1)-invariant *-exterior algebra.

Remark

In fact, $(\Omega_{\kappa}(U(1)),d)$ defines a complete *-calculus on $\mathbb{O}(U(1)).$

Chevalley–Eilenberg extensions

Let (Ω,∇) be a U(1)-*-quasi-dga; let $\kappa>0.$

The κ -deformed Chevalley–Eilenberg extension of (Ω, ∇) is the U(1)-quasi-DGA ($\mathsf{CE}_{\kappa}(\Omega)$, $\mathsf{CE}_{\kappa}(\nabla)$), where:

1. $\mathsf{CE}_\kappa(\Omega)$ is obtained from Ω by adjoining $e_\kappa\in\mathsf{CE}_\kappa(\Omega)^{\scriptscriptstyle 1}$ with

$$\omega \cdot e_{\kappa} = (-1)^{\deg(\omega)} e_{\kappa} \cdot \Lambda_{\kappa}(\omega), \quad e_{\kappa}^2 = 0, \quad e_{\kappa}^* = e_{\kappa};$$

2. $CE_{\kappa}(\nabla)$ is defined by

 $CE_{\kappa}(\nabla)(\omega) \coloneqq e_{\kappa} \cdot \vartheta_{\kappa}(\omega) + \nabla(\omega), \quad CE_{\kappa}(\nabla)(e_{\kappa}) \coloneqq 0;$

3. the U(1)-action is extended by defining e_{κ} to be U(1)-invariant.

Differentiable U(1)-actions

Let (Ω,d) be a U(1)-*-exterior algebra; let $\kappa>0.$

Then (Ω, d) is κ -vertical if $id_{\Omega^\circ} : \Omega^\circ \to CE_\kappa(\Omega)^\circ$ extends to

$$\text{ver}:(\Omega,d)\to(\text{CE}_\kappa(\Omega),\text{CE}_\kappa(d))\text{,}$$

the vertical coevaluation on (Ω, d) .

Remarks

- 1. In the commutative case, ver is contraction with $\left(\frac{\partial}{\partial t}\right)^{\#}$.
- 2. Being $\kappa\text{-vertical}$ is completeness wrt $(\Omega_\kappa(U(1)),d).$
- 3. The corresponding vertical map à la Brzeziński–Majid is

$$\operatorname{ver}_{\operatorname{BM}} = (\operatorname{ver} - \operatorname{id})\big|_{\Omega^1} \colon \Omega^1 \to e_{\kappa} \cdot \Omega^{\circ} \cong \mathbf{C} e_{\kappa} \otimes \Omega^{\circ}.$$

Vertical, horizontal, and basic forms

- Let (Ω,d) be a $\kappa\text{-vertical}\, U(1)\text{-}*\text{-exterior}$ algebra.
- 1. The U(1)-equivariant *-DGA of vertical forms is

 $(\Omega_{ver}, d_{ver}) \coloneqq (\mathsf{CE}_{\kappa}(\Omega^{\circ}), \mathsf{CE}_{\kappa}(o)).$

2. The U(1)-invariant graded *-sub-algebra of horizontal forms is

$$\Omega_{hor} \coloneqq \ker(\mathsf{ver} - \mathsf{id}) = \{ \omega \in \Omega \mid \mathsf{ver} \ \omega = \omega \}.$$

3. The trivially U(1)-equivariant *-DGA of basic forms is

$$(\Omega_{\text{bas}}, \mathsf{d}_{\text{bas}}) \coloneqq \left(\Omega_{\text{hor}}^{\mathrm{U}(1)}, \mathsf{d} \right|_{\Omega_{\text{hor}}^{\mathrm{U}(1)}}\right).$$

Differentiable quantum principal U(1)-bundles

Definition (Brzeziński–Majid, Hajac, Đurđević, Beggs–Brzeziński, Beggs–Majid, Ć.)

Given $\kappa > 0$, a κ -differentiable quantum principal U(1)-bundle is a κ -vertical U(1)-*-exterior algebra (Ω , d), such that:

- 1. there exist finite families $(e_i)_{i=1}^m$ and $(\epsilon_j)_{j=1}^n$ in $(\Omega^\circ)_1$, such that $\sum_{i=1}^m e_i e_i^* = 1 = \sum_{j=1}^n \epsilon_j^* \epsilon_k$;
- 2. Ω_{bas} is generated by Ω_{bas}° and $d(\Omega_{bas}^{\circ})$;

3.
$$\Omega_{hor} = \Omega^{\circ} \cdot \Omega_{bas} \cdot \Omega^{\circ}$$
.

 $\begin{array}{l} \text{Condition 1 implies that } \Omega^\circ \text{ is a principal } \mathfrak{O}(U(1))\text{-comodule} \\ \text{algebra and } (\Omega_{\text{ver}}, \mathsf{d}_{\text{ver}}) \text{ is a } *\text{-exterior algebra}. \end{array}$

Condition 2 implies that $(\Omega_{bas}, \mathsf{d}_{bas})$ is a *-exterior algebra.

Structure of horizontal forms

Let (Ω,d) be a $\kappa\text{-differentiable quantum principal }U(1)\text{-bundle}.$

Proposition (Beggs–Majid, Cor. 5.53)

In fact, $\Omega_{hor} = \Omega^{\circ} \cdot \Omega_{bas}$.

Definition (Đurđević, Beggs–Majid, Ć.)

The Fröhlich automorphism of (Ω, d) is the unique U(1)-equivariant automorphism Φ of $(Z\Omega_{bas}, d_{bas})$, such that

 $\forall m \in \mathbf{Z}, \, \forall p \in (\Omega^{\circ})_{m}, \, \forall \beta \in Z\Omega_{\text{bas}}, \quad p \cdot \beta = \Phi(\beta) \cdot p.$

Question

What is the relationship between the Fröhlich automorphism and the Đurđević braiding à la Del Donno–Latini–Weber?

Examples

1. Let $\theta \in \mathbf{R}$, and let $(\Omega_{\theta}(\mathbf{S}^3), d)$ be the θ -deformed de Rham calculus on $C^{\infty}_{\theta}(\mathbf{S}^3)$. Then $(\Omega_{\theta}(\mathbf{S}^3)^{\text{alg}}, d)$ is a 1-differentiable quantum principal U(1)-bundle with

$$(\Omega_{\theta}(\mathbf{S}^3)^{alg}_{bas}, \mathsf{d}_{bas}) = (\Omega(\mathbf{C}P^1), \mathsf{d})$$

and Φ given by rotation of $\mathbf{C}P^1 \cong \mathbf{S}^2$ by $2\pi\theta$.

2. Let $q \in (0, 1)$, let $(\Omega_q(\mathbf{S}^3), d)$ be the 3-dimensional calculus on $\mathcal{O}_q(SU(2))$, and let $(\Omega_q(\mathbf{C}P^1), d)$ be the 2-dimensional calculus on $\mathcal{O}_q(\mathbf{C}P^1)$. Then $(\Omega_q(\mathbf{S}^3), d)$ is a q^2 -differentiable quantum principal U(1) bundle with

$$(\Omega_q(\mathbf{S}^3)_{\mathrm{bas}}, \mathrm{d}_{\mathrm{bas}}) \cong (\Omega_q(\mathbf{C}\mathrm{P}^1), \mathrm{d})$$

and Φ uniquely determined by $\Phi(ie^+e^-) = q^2ie^+e^-$.

Principal connections

Definition (Brzeziński–Majid, Hajac, Đurđević, Beggs–Majid, Ć)

Let (Ω, d) be a κ -differentiable quantum principal U(1)-bundle. 1. A *connection* on (Ω, d) is a U(1)-equivariant surjective *-homomorphism $\Pi : \Omega^{\bullet} \to \Omega^{\bullet}_{hor}$, such that $\Pi^2 = \Pi$ and

$$\forall \omega \in \Omega^{1}, \qquad (\mathrm{id} - \Pi)(\omega)^{2} = 0.$$

2. A connection 1-form on (Ω,d) is U(1)-invariant self-adjoint $\vartheta\in\Omega^{1},$ such that

$$\alpha \cdot \vartheta = (-1)^{\deg(\alpha)} \vartheta \cdot \Lambda_{\kappa}(\alpha), \qquad \text{ver}(\vartheta) = e_{\kappa} + \vartheta.$$

The set of connection 1-forms, if non-empty, is an affine space with space of translations { $\omega \in Z\Omega_{bas}^2 \mid \omega^* = \omega$ }.

Principal connections

Proposition (Brzeziński–Majid, Đurđević, Ć.)

Let (Ω, d) be a κ -differentiable quantum principal U(1)-bundle. For every connection Π , there exists a unique connection 1-form ϑ , such that

$$\forall p \in \Omega^{\circ}, \qquad (\mathrm{id} - \Pi) \circ \mathrm{d}(p) = \vartheta \cdot \partial_{\kappa}(p),$$

and vice versa. In that case, $\Omega^{\bullet} = \Omega^{\bullet}_{hor} \oplus \vartheta_{\Pi} \cdot \Omega^{\bullet^{-1}}_{hor}$.

A connection Π restricts on Ω^1 to a *-preserving strong bimodule connection à la Brzeziński–Majid, Hajac, and Beggs–Majid.

A connection 1-form ϑ corresponds to a multiplicative regular connection à la Đurđević.

Curvature

Proposition (Đurđević, Ć.)

Let (Ω, d) be a κ -differentiable quantum principal U(1)-bundle; let Φ be its Fröhlich automorphism. Let Π be a connection on (Ω, d) ; let ϑ_{Π} be its connection 1-form.

- 1. Let $\mathfrak{F}_{\Pi} := -d(\vartheta_{\Pi})$. Then \mathfrak{F}_{Π} is closed, self-adjoint, basic, and central in Ω_{bas} , and $\Phi(\mathfrak{F}_{\Pi}) = \kappa \mathfrak{F}_{\Pi}$.
- 2. Let $d_{hor} \coloneqq \Pi \circ d$. Then (Ω_{hor}, d_{hor}) is a U(1)-equivariant *-quasi-DGA, and $d_{hor}^2(\omega) = \mathcal{F}_{\Pi} \cdot \partial_{\kappa}(\omega)$ for $\omega \in \Omega_{hor}$.

We call \mathcal{F}_{Π} the *curvature* of the connection Π on (Ω, d) .

Example

The curvature of the *q*-monopole on $(\Omega_q(\mathbf{S}^3)_{\text{bas}}, d_{\text{bas}})$ is $\frac{1}{2\pi}ie^+e^-$.

Gysin sequence in de Rham cohomology

Theorem (Bouwknegt–Hanabuss–Mathai, Ć.)

Let (Ω,d) be a κ -differentiable quantum principal bundle with connection $\Pi.$ There is a long exact sequence

$$\cdots \to H^{k}(\Omega_{\text{bas}}) \xrightarrow{\cdot [\mathcal{F}_{\Pi}]} H^{k+2}(\Omega_{\text{bas}}) \to H^{k+2}(\Omega) \xrightarrow{\int} H^{k+1}(\Omega_{\text{bas}}) \to \cdots$$

where
$$\int [\omega_1 + \vartheta_{\Pi} \cdot \omega_2] \coloneqq \left[\int_{\mathrm{U}(1)} \alpha_z(\omega_2) \, \mathrm{d}(z) \right].$$

Example

Use NC Hodge theory à la Prague on $(\Omega_q(\mathbf{C}P^1), d)$ and Gysin with respect to the q-monopole to get an easy proof that

 $H^{\mathsf{o}}(\Omega_q(\mathbf{S}^3)) = \mathbf{C}, \quad H^3(\Omega_q(\mathbf{S}^3)) = \mathbf{C}[e^{\mathsf{o}}e^+e^-], \quad H^k(\Omega_q(\mathbf{S}^3)) = \mathsf{o} \text{ else}.$

Horizontal calculi

Let *P* be a *quantum topological principal* U(1)-*bundle* with base *B*, i.e., *P* is a U(1)-*-algebra admitting finite families $(e_i)_{i=1}^m$ and $(\epsilon_j)_{j=1}^n$ in $(\Omega^\circ)_1$, such that $\sum_{i=1}^m e_i e_i^* = 1 = \sum_{j=1}^n \epsilon_j^* \epsilon_k$.

Let (Ω_B, d_B) be a *-exterior algebra on $B := P^{U(1)}$ with $\Omega_B^{\circ} = B$.

Definition (Đurđević, Ć.)

A horizontal calculus for P with respect to (Ω_B, d_B) is a U(1)-equivariant *-quasi-DGA $(\Omega_{P,hor}, d_{P,hor})$, such that

$$\Omega_{P,\text{hor}}^{\circ} = P, \quad (\Omega_{P,\text{hor}}^{U(1)}, \mathsf{d}_{P,\text{hor}} |_{\Omega_{P,\text{hor}}^{U(1)}}) = (\Omega_B, \mathsf{d}_B),$$
$$\Omega_{P,\text{hor}} = P \cdot \Omega_B \cdot P.$$

Associated line bundles Theorem (Ć.)

- 1. Hermitian line B-bimodules with Hermitian bimodule connections wrt (Ω_B, d_B) form a coherent 2-group DPIC(B) on the nose.
- 2. The mapping $m \mapsto (P_m, d_{P,hor} \mid_{P_m})$ defines a homomorphism of coherent 2-groups $\mathbb{Z} \to DPIC(B)$.
- 3. For every object (\mathcal{L}, ∇) of DPIC(B), there exists an essentially unique quantum topological principal U(1)-bundle P with base B and horizontal calculus $(\Omega_P, d_{P,hor})$ for P WRT (Ω_B, d_B) , such that

$$(\mathcal{L}, \nabla) \cong (P_1, \mathsf{d}_{P, \mathrm{hor}} \mid_{P_1}).$$

In other words,

$$(\Omega_{P,hor}, \mathsf{d}_{P,hor}) \cong (\Omega_B, \mathsf{d}_B) \rtimes_{(\mathcal{L}, \nabla)} \mathbf{Z}, \ (\mathcal{L}, \nabla) \cong (P_1, \mathsf{d}_{P,hor} \mid_{P_1}).$$

Analysis

Curvature data

For convenience, let $S(B) := \{ \omega \in Z\Omega_B^2 \mid \omega^* = \omega, d_B(\omega) = o \}.$

Definition (Đurđević, Ć.; cf. Beggs–Majid)

Let (Ω_{P,hor}, d_{P,hor}) be a horizontal calculus for P wrt (Ω_B, d_B).
1. Its *Fröhlich automorphism* is the unique U(1)-equivariant automorphism Φ_P of (ZΩ_B, d_B), such that

$$\forall m \in \mathbf{Z}, \forall p \in P_m, \forall \beta \in Z\Omega_B, \quad p \cdot \beta = \Phi_P(\beta) \cdot p.$$

2. Its curvature 1-cocycle is the unique 1-cocycle $\mathcal{F}_P : \mathbf{Z} \to \mathcal{S}(B)$ for the left \mathbf{Z} -action generated by $\Phi_P|_{\mathcal{S}(B)}$, such that

$$\forall m \in \mathbf{Z}, \forall \omega \in (\Omega_{P,hor})_m, \quad d_{P,hor}^2(\omega) = 2\pi i \mathcal{F}_P(m) \cdot \omega.$$

Hence, its curvature data is (Φ_P, \mathcal{F}_P) .

Curvature data

Example

Let (Ω,d) be a $\kappa\text{-differentiable}$ quantum principal U(1)-bundle with connection $\Pi.$

Let $d_{hor} \coloneqq \Pi \circ d \mid_{\Omega_{hor}}$, so that (Ω_{hor}, d_{hor}) defines a horizontal calculus for Ω° with respect to (Ω_{bas}, d_{bas}) .

- 1. The Fröhlich automorphism $\Phi_{\Omega^{\circ}}$ of (Ω_{hor}, d_{hor}) is the Fröhlich automorphism Φ of (Ω, d) .
- 2. The curvature 1-cocycle $\mathfrak{F}_{\Omega^\circ}$ of $(\Omega_{hor}, \mathsf{d}_{hor})$ is given by

$$\mathcal{F}_{\Omega^{\circ}}(m) = [m]_{\kappa} \mathcal{F}_{\Pi}.$$

In particular, $\Phi_{\Omega^{\circ}}(\mathcal{F}_{\Omega^{\circ}}(1)) = \kappa \mathcal{F}_{\Omega^{\circ}}(1).$

Vertical deformation parameter

Let $(\Omega_{P,hor}, d_{P,hor})$ be a horizontal calculus for P wrt (Ω_B, d_B) .

- 1. We have $d_{P,hor}^2 = 0$ IFF $\mathcal{F}_P = 0$, IFF $\mathcal{F}_P(1) = 0$; in this case, $(\Omega_{P,hor}, d_{P,hor})$ is flat.
- 2. Suppose that $(\Omega_{P,hor}, \mathsf{d}_{P,hor})$ is not flat. Given $\kappa > 0$, we have $\mathsf{d}_{P,hor}^2 = \mathcal{F}_P(1) \cdot \partial_{\kappa}(\cdot)$ IFF $\mathcal{F}_P = (m \mapsto [m]_{\kappa} \mathcal{F}_P(1))$, IFF

$$\Phi_{P}(\mathcal{F}_{P}(1)) = \kappa \mathcal{F}_{P}(1).$$

In this case, κ is the vertical deformation parameter of the horizontal calculus ($\Omega_{P,hor}$, $d_{P,hor}$).

Vertical deformation parameter

Example

Let $\theta \in \mathbf{R} \setminus \mathbf{Q}$ be quadratic with square-free discriminant. Let $\epsilon_{\theta} = c\theta + d \in \mathbf{Z} + \mathbf{Z}\theta$ be the *norm-positive fundamental unit* of the real quadratic number field $\mathbf{Q}[\theta]$. Let \mathcal{L} be the *basic Heisenberg module* on $C_{\theta}^{\infty}(\mathbf{T}^2)$ of rank ϵ_{θ} and degree *c*; let ∇ be its canonical constant curvature connection. Then $(\Omega_{\theta}(\mathbf{T}^2), d) \rtimes_{(\mathcal{L}, \nabla)} \mathbf{Z}$ has curvature data (Φ, \mathcal{F}) defined by

$$\Phi = \bigoplus_{m=0}^{2} \epsilon_{\theta}^{m} \operatorname{id}_{\bigwedge \mathbf{R}^{2}}, \qquad \qquad \mathcal{F}(m) = [m]_{\epsilon_{\theta}^{2}} c e^{1} e^{2},$$

hence, vertical deformation parameter $\varepsilon_{\theta}^2 > 1.$

Synthesis of total calculi

Theorem (Đurđević, Ć.)

Let $(\Omega_{P,hor}, d_{P,hor})$ be a horizontal calculus for P WRT (Ω_B, d_B) . Let $\kappa > 0$ be given, and suppose that $(\Omega_{P,hor}, d_{P,hor})$ is flat or has deformation parameter κ . There exists essentially unique κ -differentiable quantum principal U(1)-bundle with connection $(\Omega_P, d_P; \Pi_P)$, such that

$$\Omega_P^{\circ} = P, \qquad ((\Omega_P)_{hor}, (\mathsf{d}_P)_{hor}) \cong (\Omega_{P,hor}, \mathsf{d}_{P,hor}).$$

Without loss of generality, $\Omega_P = CE_{\kappa}(\Omega_{P,hor})$, Π_P is projection on $\Omega_{P,hor}$ along $e_{\kappa} \cdot \Omega_{P,hor}$, and

$$\mathsf{d}_P(\omega) = e_\kappa \cdot \partial_\kappa(\omega) + \mathsf{d}_{P,\mathrm{hor}}(\omega), \qquad \mathsf{d}_P(e_k) = -\mathfrak{F}_P(1).$$